• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Building energy efficiency: Enhancing HVAC fault detection with transformer and transfer learning

Bioengineer by Bioengineer
April 1, 2024
in Chemistry
Reading Time: 3 mins read
0
Modified transformer model with one encoder and two decoders.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A recent study has made a significant step forward in improving the energy efficiency of buildings by enhancing the accuracy and adaptability of fault detection and diagnosis (FDD) in heating, ventilation, and air conditioning (HVAC) systems. This advancement holds profound implications for energy conservation efforts, promising improved energy savings and system reliability in building energy management.

Modified transformer model with one encoder and two decoders.

Credit: Zi-Cheng W. et al.,

A recent study has made a significant step forward in improving the energy efficiency of buildings by enhancing the accuracy and adaptability of fault detection and diagnosis (FDD) in heating, ventilation, and air conditioning (HVAC) systems. This advancement holds profound implications for energy conservation efforts, promising improved energy savings and system reliability in building energy management.

Heating, ventilation, and air conditioning (HVAC) systems, a critical component of building energy consumption, are prone to faults that can reduce their efficiency. Traditional data-driven fault detection and diagnosis (FDD) models often suffer from limited generalizability, making their application across diverse systems challenging.

A study (DOI: 10.1016/j.enss.2024.02.004) published in Energy Storage and Saving in February 2024 by researchers from Xi’an Jiaotong University introduces a novel approach to FDD in HVAC systems. This research leverages a modified transformer model and adapter-based transfer learning to enhance the generalizability of FDD models across various HVAC systems.

The team developed a transformer model enhanced with an encoder and two decoders, enabling simultaneous identification of multiple fault types and severities. This innovation is complemented by an adapter-based transfer learning strategy, allowing the model to adapt efficiently across various HVAC systems, even with limited data. Two designed transfer learning scenarios demonstrate the effectiveness of the proposed HVAC FDD transfer learning framework, compared with the popular fine-tuning method. By integrating an efficient transfer learning technique, the model can be seamlessly transferred from one comprehensive dataset to another with less available data. This approach significantly enhances the model’s versatility, facilitating its application to different systems without the need for extensive retraining or data collection.

Dong Li, a contributing researcher to the study, states, “Leveraging the power of transformer and adapter-based transfer learning, this study not only propels us closer to achieving energy savings in buildings, but also enhances the safe and reliability of HVAC operations.”

This research represents a significant step in HVAC system maintenance, introducing a highly adaptable fault detection method that ensures systems operate at peak efficiency with reduced energy consumption. By leveraging advanced transfer learning techniques, it offers a scalable solution that can be applied across various HVAC systems, promising widespread benefits in energy savings and system reliability.

###

Contact the author: Name: Yue Yang,Email: [email protected]

The publisher KeAi was established by Elsevier and China Science Publishing & Media Ltd to unfold quality research globally. In 2013, our focus shifted to open access publishing. We now proudly publish more than 100 world-class, open access, English language journals, spanning all scientific disciplines. Many of these are titles we publish in partnership with prestigious societies and academic institutions, such as the National Natural Science Foundation of China (NSFC).



Journal

Energy Storage and Saving

DOI

10.1016/j.enss.2024.02.004

Article Title

A modified transformer and adapter-based transfer learning for fault detection and diagnosis in HVAC systems

Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

October 12, 2025
Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

October 10, 2025

Wirth Named Fellow of the American Physical Society

October 10, 2025

UTA Physicist Secures $1.3 Million Grant to Advance Neutrino Research

October 10, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1230 shares
    Share 491 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Discovering Key Serum Biomarkers in Duchenne Muscular Dystrophy

IGFBP2 Prevents Ferroptosis in Cardiac I/R Injury

Key Uncertainties in Puerto Rico’s Energy Transition

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.