• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Building better bacteriophage to combat antibiotic-resistant bacteria

Bioengineer by Bioengineer
November 21, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Mary Ann Liebert, Inc., publishers


New Rochelle, NY, November 21, 2019-Researchers are pursuing engineered bacteriophage as alternatives to antibiotics to infect and kill multi-drug resistant bacteria. The potential for an innovative synthetic biology approach to enhance phage therapeutics and the role a biofoundry can play in making this approach feasible and effective is discussed in an article in PHAGE: Therapy, Applications, and Research, a new peer-reviewed journal from Mary Ann Liebert, Inc., publishers launching in early 2020. Click here to read the full-text article free on the PHAGE website through December 21, 2019.

The article entitled “Building Better Bacteriophage with Biofoundries to Combat Antibiotic-Resistant Bacteria” was coauthored by Karen Weynberg, PhD, The University of Queensland (St. Lucia) and CSIRO Future Science Platform (Brisbane) and Paul Jaschke, PhD, Macquarie University (Sydney), Australia. The authors discuss the promise of phage therapy as a radical alternative to antibiotics, and the use of synthetic biology to engineer novel phage with desirable characteristics. They also describe the emerging use of cutting-edge facilities called biofoundries, in which automated, high-throughput laboratory processes can accelerate the bioengineering, modification, and selection of bacteriophage, making their development more effective and cost-efficient.

“This article nicely summarizes the state-of-the-art in terms of using molecular biology to create ‘next-generation phages,'” says Martha Clokie, PhD, Editor-in-Chief of PHAGE and Professor of Microbiology, University of Leicester (U.K.). “Once we have understood the biology of these organisms, the sky is possibly the limit in terms of how we can engineer them to make them even more attuned to specific purposes.”

###

About the Journal

PHAGE: Therapy, Applications, and Research is the only peer-reviewed journal dedicated to fundamental bacteriophage research and its applications in medicine, agriculture, aquaculture, veterinary applications, animal production, food safety, and food production. Led by Editor-in-Chief, Martha Clokie, PhD, University of Leicester, United Kingdom, the Journal showcases groundbreaking research, reviews, commentaries, opinion pieces, profiles and perspectives dedicated to defining the roles of phages in all facets of microbiology and microbial ecology and exploring their potential to manipulate bacterial communities and treat infection. More information is available on the PHAGE website.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including The CRISPR Journal, Human Gene Therapy, Microbial Drug Resistance, and Viral Immunology. Its biotechnology trade magazine, GEN (Genetic Engineering & Biotechnology News), was the first in its field and is today the industry’s most widely read publication worldwide. A complete list of the firm’s 90 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.

Media Contact
Kathryn Ryan
[email protected]
914-740-2250

Original Source

https://home.liebertpub.com/news/building-better-bacteriophage-to-combat-antibiotic-resistant-bacteria/3623

Related Journal Article

http://dx.doi.org/10.1089/phage.2019.0005

Tags: BacteriologyBiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Rapid, Non-Invasive Method to Detect Timber Adulteration

Rapid, Non-Invasive Method to Detect Timber Adulteration

August 24, 2025
Trait Diversity of Malvastrum in Pakistan’s Tree Plantations

Trait Diversity of Malvastrum in Pakistan’s Tree Plantations

August 24, 2025

Cicada Exuviae: Unique Soil Adhesion and Water Resistance

August 24, 2025

Neural Stem Cell Exosomes Alleviate MPTP-Induced Parkinson’s

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rapid, Non-Invasive Method to Detect Timber Adulteration

New AMH Cutoffs for Chinese Women with PCOS

Trait Diversity of Malvastrum in Pakistan’s Tree Plantations

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.