• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Building a better alligator: Researchers develop advanced 3-D models of bite data

Bioengineer by Bioengineer
June 16, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Casey Holliday

COLUMBIA, Mo. – The skulls of alligators protect their brains, eyes and sense organs while producing some of the most powerful bite forces in the animal kingdom. The ability to bite hard is critical for crocodilians to eat their food such as turtles, wildebeest and other large prey; therefore, their anatomy is closely studied by veterinarians and paleontologists who are interested in animal movements and anatomy. Now, researchers at the University of Missouri and the University of Southern Indiana have developed three-dimensional models of the skull of the American alligator using cutting-edge imaging and computational tools. The researchers validated their simulations using previously reported bite-force data proving their accuracy. These models also can assist scientists in studying the origins and movements of extinct species and other animals.

"Collecting bite data from live animals like alligators can be pretty dangerous and potentially deadly, so accurate 3-D models are the best way for biomechanists, veterinarians, and paleontologists interested in the function and evolution of these amazing animals to study them," said Casey M. Holliday, associate professor of pathology and anatomical sciences in the MU School of Medicine. "It is impossible to analyze the bite forces in extinct hard-biting species like the giant Cretaceous crocodile Deinosuchus, or the famous bone-crunching dinosaur Tyrannosaurus rex, so precise models are imperative when studying extinct species."

The team's approach was to first report naturalistic, three-dimensional computational modeling of the jaw muscles that produce forces within the alligator skulls to better understand how bite forces change during growth. Then, they compared their findings to previously reported bite forces collected from live alligators.

"Because alligators and crocodilians have had such extreme feeding performance for millions of years, they have been a popular topic of study for paleontologists and biologists," said Kaleb Sellers, a doctoral student in Holliday's lab. "Our models stand out because we're the first to distribute loads of their huge muscles across their attachment surfaces on the alligator skull. This lets us better understand how muscle forces and bite forces impact the skull."

These new methods and findings pave the way to better understanding the 3-D biomechanical environment, development and evolution of the skull of not only alligators, but other crocodilians, birds, dinosaurs and other vertebrates, Holliday said.

###

The study, "Ontogeny of bite force in a validated biomechanical model of the American alligator," recently was published in the

###

. Research was funded by the University of Missouri Research Board, Missouri Research Council, the National Science Foundation (Grants: IOS 1457319 and EAR 163753) and the Department of Pathology and Anatomical Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agency.Co-authors on the study include Kevin Middleton, an associate professor in the MU Department of Pathology and Anatomical Sciences; and Julian Davis, an associate professor of engineering at the University of Southern Indiana.

Media Contact

Jeff Sossamon
[email protected]
573-882-3346
@mizzounews

http://www.missouri.edu

Original Source

http://munews.missouri.edu/news-releases/2017/0616-building-a-better-alligator-researchers-develop-advanced-three-dimensional-models-of-bite-data-to-study-dinosaurs-birds-crocodiles/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Enhancing White Lupin Seed Quality through Genetic Insights

Enhancing White Lupin Seed Quality through Genetic Insights

October 15, 2025
Mount Sinai Studies Reveal Key Molecular Differences Between Living and Postmortem Brain Tissue

Mount Sinai Studies Reveal Key Molecular Differences Between Living and Postmortem Brain Tissue

October 15, 2025

Eight Bat Species Frequent Pig Farms in Northern Italy for Commuting and Foraging

October 15, 2025

Unraveling Takotsubo Syndrome: Psychosocial and Clinical Insights

October 15, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1247 shares
    Share 498 Tweet 311
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advanced g-C3N4/NiMn Nanocomposite Boosts Supercapacitor Performance

Amines Transformed via Boryl Radical Scission

Primary Care Insights on Adolescent Eating Disorders

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.