• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Bromide ions cause ripples in semiclathrate hydrates

Bioengineer by Bioengineer
July 26, 2023
in Chemistry
Reading Time: 3 mins read
0
Fig. 1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Osaka, Japan – The way that water molecules behave in proton conducting materials is very important for understanding—and making the most of—their properties. This means being able to look at very rapid snapshots to catch changes in the water motion. Researchers from Osaka University have taken a close look at semiclathrate hydrate crystals using quasi-elastic neutron scattering (QENS). Their findings are published in Applied Physics Letters.

Fig. 1

Credit: 2023, Shimada et al., Quasi-elastic neutron scattering studies on fast dynamics of water molecules in tetra-n-butylammonium bromide semiclathrate hydrate, Applied Physics Letters

Osaka, Japan – The way that water molecules behave in proton conducting materials is very important for understanding—and making the most of—their properties. This means being able to look at very rapid snapshots to catch changes in the water motion. Researchers from Osaka University have taken a close look at semiclathrate hydrate crystals using quasi-elastic neutron scattering (QENS). Their findings are published in Applied Physics Letters.

Semiclathrate hydrates have water molecule frameworks that house other molecules or ions as ‘guests’ in their structures. The overall properties of the framework can therefore be controlled and tailored to particular requirements by introducing different guests.

However, some of the best proton conductors are highly acidic solutions and are difficult to be handled. Solid electrolyte alternatives are therefore needed. Tetra-n-butylammonium bromide (TBAB) semiclathrate hydrate is known to be a promising solid electrolyte, but the mechanism behind its performance has been unclear.

The researchers took a close look at the water molecule dynamics in TBAB semiclathrate hydrate using QENS. This allowed motions of the water molecules to be captured over much shorter periods than have been achieved with other techniques, providing a clearer picture of what is happening.

“The transfer of protons in the semiclathrate hydrate is suspended by the water molecules,” explains study lead author Jin Shimada. “The way the water molecules then reorient—their reorientation motion—then tells us about what might be affecting the conduction.”

QENS showed that water molecules in the crystal reorientate themselves very rapidly in much shorter times than have previously been measured. In addition, the energy needed to prompt the change is consistent with that needed to break a hydrogen bond, the type of interaction that occurs between the guest ions and the water molecules.

It is believed that the large bromide ion that forms part of TBAB activates the water to behave as it would around bromide in aqueous solution.

“The insight we have gained into TBAB semiclathrate hydrate provides an excellent grounding for future innovation,” says senior author Takeshi Sugahara. “We believe the findings will contribute to the development of batteries and thermal storage materials.”

###

The article, “Quasi-elastic neutron scattering studies on fast dynamics of water molecules in tetra-n-butylammonium bromide semiclathrate hydrate”, will be published in Applied Physics Letters at DOI: https://doi.org/10.1063/5.0157560.



Journal

Applied Physics Letters

DOI

10.1063/5.0157560

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Quasi-elastic neutron scattering studies on fast dynamics of water molecules in tetra-n-butylammonium bromide semiclathrate hydrate

Article Publication Date

26-Jul-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Underwater Thermal Vents Could Be the Cradle of Life’s Earliest Molecular Precursors

October 22, 2025
blank

New Bacterium Harnesses Spent Battery Waste, Paving the Way for Self-Sufficient Battery Recycling

October 22, 2025

Light Particles Thrive in Groups, Study Reveals

October 22, 2025

Innovative Observation Technique Advances Prospects for Lithium Metal Batteries

October 22, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1275 shares
    Share 509 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    306 shares
    Share 122 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    145 shares
    Share 58 Tweet 36
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    131 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Deterministic Soliton Microcombs in Cu-Free PICs

New Genomic Test May Help Melanoma Patients Avoid Lymph Node Biopsy Surgery

Study finds gum disease and cavities may elevate risk of stroke

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.