• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Bringing back an ancient bird

Bioengineer by Bioengineer
May 28, 2024
in Biology
Reading Time: 3 mins read
0
moa and other species
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Using ancient DNA extracted from the toe bone of a museum specimen, Harvard biologists have sequenced the genome of an extinct, flightless bird called the little bush moa, shedding light into an unknown corner of avian genetic history.

moa and other species

Credit: Wren Lu

Using ancient DNA extracted from the toe bone of a museum specimen, Harvard biologists have sequenced the genome of an extinct, flightless bird called the little bush moa, shedding light into an unknown corner of avian genetic history.

Published in Science Advances, the work is the first complete genetic map of the turkey-sized bird whose distant living cousins include the ostrich, emu, and kiwi. It is one of nine known species of moa, all extinct for the last 700 years, that inhabited New Zealand before the late 1200s and the arrival of Polynesian human settlers.

“We’re pulling away the veil across the mystery of this species,” said senior author Scott V. Edwards, professor in the Department of Organismic and Evolutionary Biology and curator of ornithology at the Museum of Comparative Zoology. “We can study modern birds by looking at them and their behavior. With extinct species, we have very little information except what their bones looked like and in some cases what they ate. DNA provides a really exciting window into the natural history of extinct species like the little bush moa.”  

Bush moa were the smallest of the moa species, weighing about 60 pounds and distributed in lowland forests across the north and south islands of New Zealand. Genomic analysis has revealed their closest living relatives aren’t kiwis, as was originally speculated, but rather tinamous, a Neotropical bird group from which they diverged genetically about 53 million years ago.

The Harvard team offers new genetic evidence for various aspects of bush moa sensory biology. Like many birds, they had four types of cone photoreceptors in their retinas, which gave them not only color but also ultraviolet vision. They had a full set of taste receptors, including bitter and umami. Perhaps the most remarkable trait of these flightless birds is their complete absence of forelimb skeletal elements that typically comprise birds’ wings, the researchers wrote. Studying the moa genome could offer new clues into how and why some birds evolved to become flightless.

The scientists used high-throughput DNA sequencing, which allows rapid sequencing of short DNA fragments of only 101 nucleotide base pairs and the building of libraries with millions of these genetic sections. To produce the bush moa genome, the team sequenced the equivalent of 140 bird genomes, or about 140 billion base pairs of DNA, only about 12% of which was actual moa DNA (the rest was bacterial).

They then assembled the genome, taking each snippet of DNA and mapping it to its correct position. Genome assembly of extinct species is painstaking work that is made more accessible through technologies like high-throughput sequencing. Other species that have been mapped similarly are the passenger pigeon, the woolly mammoth, and our close relative, the Neanderthal. Using an existing emu genome as a guide, they strung together the bush moa’s genetic sequence by finding overlaps between each genetic snippet, essentially reconstructing a long puzzle of 140 billion pieces. 

The bush moa project originated more than 15 years ago in the lab of the late Allan J. Baker, an expert in ancient bird DNA at the Royal Ontario Museum who first extracted and sequenced the bird’s DNA from a fossil recovered on the South Island of New Zealand. Also involved in the initial DNA processing and sequencing was co-author Alison Cloutier, who formerly worked with Baker and later became a postdoctoral researcher in Edwards’ lab at Harvard which inherited the data.

Reconstructing the genome of a long-extinct bird fills in a new branch of the avian family tree, opening doors to study avian evolution, or even someday, to possibly resurrect these species through de-extinction technologies.

“To me, this work is all about fleshing out the natural history of this amazing species,” Edwards said.



Journal

Science Advances

DOI

10.1126/sciadv.adj6823

Method of Research

Data/statistical analysis

Subject of Research

Animals

Article Title

A nuclear genome assembly of an extinct flightless bird, the little bush moa

Article Publication Date

23-May-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

ML Unlocks Key SNPs for Population Assignment

ML Unlocks Key SNPs for Population Assignment

November 18, 2025
Mapping Splicing Events in Cows’ β-Casein Genotypes

Mapping Splicing Events in Cows’ β-Casein Genotypes

November 17, 2025

Microchimerism: Challenging Conventional Views on Sex and Gender

November 17, 2025

Bifidobacterium animalis QC08 Boosts Immunity in Mice

November 17, 2025

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    117 shares
    Share 47 Tweet 29
  • Neurological Impacts of COVID and MIS-C in Children

    89 shares
    Share 36 Tweet 22

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Genetic Diversity of 10 DIP-STR Markers in US Groups

ML Unlocks Key SNPs for Population Assignment

Maternal MSG Exposure Triggers Inflammation, Metabolic Issues

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.