• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Bright future for self-charging batteries

Bioengineer by Bioengineer
April 24, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Who hasn't lived through the frustrating experience of being without a phone after forgetting to recharge it? This could one day be a thing of the past thanks to technology being developed by Hydro-Québec and McGill University.

Lithium-ion batteries have allowed the rapid proliferation of all kinds of mobile devices such as phones, tablets and computers. These tools however require frequent re-charging because of the limited energy density of their batteries.

"With smart phones now, you can basically carry your whole office in that device, they are loaded with all sorts of applications so you need a lot of power to use it everyday and sometimes, you don't have access to a plug to recharge," explains Professor George P. Demopoulos, chair of Mining and Materials Engineering at McGill University.

This has led to the development of portable solar chargers but these hybrid devices are difficult to miniaturize due to their complex circuitry and packaging issues.

To solve this problem, scientists at McGill University and the Hydro-Québec's research institute are working on a single device capable of harvesting and storing energy using light. In other words, a self-charging battery.

A first milestone

A novel concept presented in a Nature Communications paper by Professor Demopoulos and researchers at Hydro-Québec paves the way to these so-called light-charged batteries.

The study shows that a standard cathode from a lithium-ion battery can be "sensitized" to light by incorporating photo-harvesting dye molecules. "In other words," says Dr. Andrea Paolella, the study's lead author and researcher at Hydro-Québec, "our research team was able to simulate a charging process using light as a source of energy."

Scientists will now have to build an anode, the storage component, which will close the device's circuit, allowing energy produced by the cathode described in Nature Communications to be transferred and stored. If they succeed, they will have built the world's first 100% self-charging lithium-ion battery.

Potential for mobile devices

The research team is already working on phase two of this project, thanks to a $564,000 grant from the Natural Sciences and Engineering Research Council of Canada.

"We have done half of the job," says Professor Demopoulos, co-senior author of the paper with Hydro-Québec's Dr. Karim Zaghib, a world leading expert on batteries. "We know that we can design the electrode that absorbs light. "This grant will give us the opportunity to bridge the gap and demonstrate that this new concept of a light-chargeable battery is possible."

"I'm an optimist and I think we can get a fully working device," says Paolella, who is also a former post-doctoral student from McGill. "Theoretically speaking, our goal is to develop a new hybrid solar-battery system, but depending on the power it can generate when we miniaturize it, we can imagine applications for portable devices such as phones".

"Hydro-Québec has a strong global position with regard to the development of innovative, high-performance and safe battery materials," says Karim Zaghib Director – Energy Storage and Conservation at IREQ, Hydro-Québec's research institute.

While it may take a few years to complete the second phase of the project, Professor Demopoulos believes this "passive form of charging" could play an important role in portable devices of the future…

###

Media Contact

Justin Dupuis
[email protected]
514-398-6751
@McGillU

http://www.mcgill.ca

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Spin Squeezing Achieved in Diamond NV Centers

October 2, 2025
blank

Revolutionizing Materials: Long-Distance Remote Epitaxy

October 2, 2025

Spirituality Eases Occupational Stress in Nurses’ Lives

October 2, 2025

Edge States Shaped by Eigenvalue, Eigenstate Winding

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Spin Squeezing Achieved in Diamond NV Centers

Revolutionizing Materials: Long-Distance Remote Epitaxy

Spirituality Eases Occupational Stress in Nurses’ Lives

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.