• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Brian Peters part of multi-disciplinary team awarded $3.9 million to study mixed fungal-bacterial infections

by
August 14, 2024
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Brian Peters, PhD, First Tennessee Endowed Chair of Excellence in Clinical Pharmacy and professor in the Department of Clinical Pharmacy and Translational Science at the UT Health Science Center, was recently awarded $3.9 million from the National Institute of Allergy and Infectious Diseases for a project aimed at unravelling intricate mysteries surrounding complex fungal-bacterial infections. James Cassat, MD, PhD, Vanderbilt University Medical Center, and Paul Fidel, PhD, LSU Health New Orleans, are also principal investigators.

Dr. Brian Peters

Credit: The University of Tennessee Health Science Center

Brian Peters, PhD, First Tennessee Endowed Chair of Excellence in Clinical Pharmacy and professor in the Department of Clinical Pharmacy and Translational Science at the UT Health Science Center, was recently awarded $3.9 million from the National Institute of Allergy and Infectious Diseases for a project aimed at unravelling intricate mysteries surrounding complex fungal-bacterial infections. James Cassat, MD, PhD, Vanderbilt University Medical Center, and Paul Fidel, PhD, LSU Health New Orleans, are also principal investigators.

Infections caused by both fungi and bacteria are on the rise among hospital patients, yet there is a significant lack of research addressing these types of infections.

Candida albicans, a leading cause of severe fungal infections, ranks among the most common causes of hospital related bloodstream infections in the U.S. Alarmingly, these fungal infections have a higher mortality rate compared to bacterial infections, with approximately 40% of infected individuals not surviving when the fungus enters the bloodstream, despite appropriate treatment. The situation is even more dire for intra-abdominal infections involving both fungi and bacteria, where mortality rates can soar to 50-75%, far surpassing the 20% mortality associated with bacteria-only infections. Additionally, fungal involvement is linked to increased relapse rates and more severe disease presentation.

Despite the serious implications, the underlying mechanisms that contribute to this heightened mortality remain largely unexplored. The overarching objective of this project aim to uncover the factors within both the body’s defense system and the microbes themselves that contribute to the increased lethality of these dual infections.

“Despite knowing that microbes exist as diverse communities, pathogenesis-related research is still largely studied using microbes in isolation due to reduced complexity,” Dr. Peters said. “The rules quickly change when suddenly two microbes are jockeying for space and nutrients, which can ultimately alter how they interact with the host. Our multidisciplinary team, with expertise in fungal pathogenesis, bacterial virulence, and immunology is poised to tackle these difficult questions.”

The research team hypothesizes that intra-abdominal infections involving both fungi and bacteria create a lethal environment through microbial interactions that enhance bacterial toxin production. This surge in toxins elicits an exaggerated immune response, disrupts the blood clotting process, and alters bone marrow function that can otherwise confer protection.

To test this hypothesis, the team will model the interactions between Candida albicans (the fungus) and Staphylococcus aureus (a common bacterium associated with such infections). They will investigate how Candida albicans stimulates Staphylococcus aureus to produce increased levels of toxins during co-infection in the abdominal cavity. Another aim is to identify the bacterial factors that impair the body’s ability to control bleeding and form clots during these mixed infections, and how these factors contribute to elevated mortality rates. Finally, they will explore how the toxins released by Staphylococcus aureus, prompted by Candida, impact bone marrow health and the body’s initial protective immune responses.

Through this research, the team hopes to reveal new mechanisms that underlie the severity of polymicrobial infections and ultimately develop improved therapeutic strategies to enhance treatment outcomes.



Share12Tweet8Share2ShareShareShare2

Related Posts

Pediatric AKI: Biomarkers and AI Transform Detection

Pediatric AKI: Biomarkers and AI Transform Detection

August 21, 2025
Global Virus Network Debuts “Global Guardians” Youth Camp to Train the Next Generation of Virus Hunters

Global Virus Network Debuts “Global Guardians” Youth Camp to Train the Next Generation of Virus Hunters

August 21, 2025

mAChR4 Boosts Liver Health Through GAP Immunity

August 21, 2025

Prenatal Heart Disease Counseling: Understanding and Communication Gaps

August 21, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Reformulated Cancer Drug Enhances Tumor Targeting and Strengthens Combination Therapy Outcomes

Seeking Signs: If Aliens Explore Space As We Do, We Should Listen for Their Calls to Other Planets

Metformin’s Potential Role in Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.