• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Breeding a better strawberry

Bioengineer by Bioengineer
February 25, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists uncover genetic roadmap of cultivated strawberry

IMAGE

Credit: UC Davis

Consumers want strawberries to be red, sweet, ripe and juicy, like those fresh picked from a garden. Suppliers want them to be easy to handle and ship, without getting squished. Commercial strawberry growers need their crops to be high-yielding and disease-resistant.

An international team of scientists led by the University of California, Davis, and Michigan State University has taken a step that might allow breeders to grow a strawberry to satisfy all those needs. They’ve sequenced and analyzed the genome of the cultivated strawberry, which will provide a genetic roadmap to help more precisely select desired traits. The study was published today (Feb. 25) in the journal Nature Genetics.

“Without the genome we were flying blind,” said Steven Knapp, professor of plant sciences and director of the UC Davis Strawberry Breeding Program. “It was like having a library of books, but all the books’ pages were blank.”

Protecting strawberries from disease

The U.S. is the world’s largest producer of strawberries, and almost 90 percent of them are grown in the cool, coastal climates of California. Growers are constantly struggling to fight off diseases like Fusarium wilt, Verticillium wilt and Macrophomina without having to use fumigants. The assembled genome will allow scientists to pinpoint specific genes that can protect the plant against diseases. Strawberries can also have diseases that may involve several different genes, similar to complex diseases in humans. Sequencing the genome will help unravel that complexity.

“The genome sequence is powerful because it provides scientists with barcodes for nearly all the genes in strawberry. We can use that information to identify genes that play an important role in traits of agricultural importance,” said Knapp.

Similarly, scientists may also be able to find genes in the strawberry that lead to increased flavor or aroma for the consumer, while maintaining the firmness and shelf life for producers.

Origins of the strawberry

Patrick Edger, co-corresponding author with Michigan State University, and his team also deciphered the complex evolutionary history of the cultivated strawberry. While humans are diploid species, meaning each cell contains two complete sets of chromosomes, one from each parent, the cultivated strawberry is an octoploid. Each cell in a strawberry plant contains eight complete sets of chromosomes, so untangling its evolution is a feat.

“Strawberry has a rich history that spans the globe, ultimately culminating in the fruit we enjoy today,” said Edger.

###

Other UC Davis authors in the study include postdoctoral scholars Thomas Poorten and Michael Hardigan. The study was funded by the USDA National Institute of Food and Agriculture, the National Science Foundation, and the California Strawberry Commission.

Media Contact
Amy Quinton
[email protected]

Original Source

http://www.ucdavis.edu/food/news/breeding-better-strawberry

Related Journal Article

http://dx.doi.org/10.1038/s41588-019-0356-4

Tags: AgricultureBiologyEvolutionFood/Food ScienceGenesGeneticsPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

How Evolution Sheds Light on Autism Rates in Humans

How Evolution Sheds Light on Autism Rates in Humans

September 9, 2025
blank

Diverse Strategies Enable Fly Embryos to Resolve the Challenge of ‘Tissue Tectonic Collision’

September 9, 2025

Elephant Group Size and Age in Serengeti vs. Mikumi

September 9, 2025

Tiny Genetic Light Switches Revolutionize Disease Control

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Graz Researchers Uncover Mechanisms Behind Aorta Stiffening

Relative Fat Mass Predicts Type 2 Diabetes Risk

Revolutionary Atomic-Level Etching Technique Enhances Hafnium Oxide, Paving the Way for Next-Generation Semiconductors

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.