• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Breakthrough study unveils sustainable solution to vitamin B12 deficiency

by
August 20, 2024
in Chemistry
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In new research published in the scientific journal Discover Food, Dr. Asaf Tzachor, Founder and Academic Director of the Aviram Sustainability and Climate Program at Reichman University, along with a team of researchers from Iceland, Denmark and Austria, report the use of state-of-the-art biotechnology to cultivate photosynthetically-controlled Spirulina, and produce carbon–neutral and nutritious biomass containing unopposed, biologically active vitamin B12, in levels comparable to beef meat. This is the first time biologically active vitamin B12 has been reported in Spirulina.

:  Dr. Asaf Tzachor, Founder and Academic Director of the Aviram Sustainability and Climate Program at Reichman University

Credit: Oz Schechter

In new research published in the scientific journal Discover Food, Dr. Asaf Tzachor, Founder and Academic Director of the Aviram Sustainability and Climate Program at Reichman University, along with a team of researchers from Iceland, Denmark and Austria, report the use of state-of-the-art biotechnology to cultivate photosynthetically-controlled Spirulina, and produce carbon–neutral and nutritious biomass containing unopposed, biologically active vitamin B12, in levels comparable to beef meat. This is the first time biologically active vitamin B12 has been reported in Spirulina.

 

Their new study reveals a potential solution to one of the most widespread micronutrient deficiencies: vitamin B12. With over a billion individuals worldwide suffering from low levels of this essential vitamin, the reliance on meat and dairy products for adequate B12 intake (2.4 µg/day) presents significant environmental challenges.

 

While Spirulina blue-green algae (Arthrospira platensis) has been proposed as a healthier and more sustainable substitute for meat and dairy, so-called traditional Spirulina has fallen short as a viable alternative due to its content of pseudo-vitamin B12, a form not bioavailable to humans. This limitation has hindered its potential to address vitamin B12 deficiencies, and fully replace beef meat in human diets.

 

In a pioneering exploratory study, an international team of researchers from Reichman University, University of Natural Resources and Life Sciences, Vienna, Ruppin Academic Center, Danish Technological Institute, and MATIS, Iceland, sought to overcome this challenge.

 

The team evaluated a biotechnology system developed by VAXA Technologies in Iceland, focusing on its engineering components, inputs (such as energy), and outputs, including biomass composition. The system employs photonic management (modified light conditions) to enhance active vitamin B12 production in Spirulina, along with other bioactive compounds with antioxidant, anti-inflammatory, and immune-boosting properties. This innovative approach yielded carbon-neutral, nutritious biomass containing biologically active vitamin B12 at levels comparable to beef (1.64 µg/100g in PCS vs. 0.7–1.5 μg/100g in beef).

 

Dr. Asaf Tzachor, explains, “the findings demonstrate that photosynthetically controlled Spirulina can produce desirable levels of active vitamin B12, offering a sustainable alternative to traditional animal-source foods.”

 

The study also explores production scale-up scenarios with profound implications for global nutrition. By reallocating electricity from heavy industry, Iceland could produce 277,950 tonnes of Spirulina biomass annually. This output translates to approximately 4555 grams of active vitamin B12 per year, meeting the recommended dietary allowance (RDA) for over 13.8 million children aged 1–3. More ambitious scenarios suggest the potential to meet the RDA for over 26.5 million children aged 1–3, and over 50 million children aged 0–6 months.

 

This breakthrough marks a significant step towards addressing global vitamin B12 deficiency sustainably, reducing reliance on environmentally taxing meat and dairy production.

 

In response to planetary and public health crises around the world, Reichman University, in partnership with the Aviram Foundation, established the Aviram Sustainability and Climate Program. The program trains outstanding students from all disciplines to develop solutions and strategies for addressing resource scarcities, climate change and extreme weather events, food, water, and energy crises, and more.

In new research published in the scientific journal Discover Food, Dr. Asaf Tzachor, Founder and Academic Director of the Aviram Sustainability and Climate Program at Reichman University, along with a team of researchers from Iceland, Denmark and Austria, report the use of state-of-the-art biotechnology to cultivate photosynthetically-controlled Spirulina, and produce carbon–neutral and nutritious biomass containing unopposed, biologically active vitamin B12, in levels comparable to beef meat. This is the first time biologically active vitamin B12 has been reported in Spirulina.

 

Their new study reveals a potential solution to one of the most widespread micronutrient deficiencies: vitamin B12. With over a billion individuals worldwide suffering from low levels of this essential vitamin, the reliance on meat and dairy products for adequate B12 intake (2.4 µg/day) presents significant environmental challenges.

 

While Spirulina blue-green algae (Arthrospira platensis) has been proposed as a healthier and more sustainable substitute for meat and dairy, so-called traditional Spirulina has fallen short as a viable alternative due to its content of pseudo-vitamin B12, a form not bioavailable to humans. This limitation has hindered its potential to address vitamin B12 deficiencies, and fully replace beef meat in human diets.

 

In a pioneering exploratory study, an international team of researchers from Reichman University, University of Natural Resources and Life Sciences, Vienna, Ruppin Academic Center, Danish Technological Institute, and MATIS, Iceland, sought to overcome this challenge.

 

The team evaluated a biotechnology system developed by VAXA Technologies in Iceland, focusing on its engineering components, inputs (such as energy), and outputs, including biomass composition. The system employs photonic management (modified light conditions) to enhance active vitamin B12 production in Spirulina, along with other bioactive compounds with antioxidant, anti-inflammatory, and immune-boosting properties. This innovative approach yielded carbon-neutral, nutritious biomass containing biologically active vitamin B12 at levels comparable to beef (1.64 µg/100g in PCS vs. 0.7–1.5 μg/100g in beef).

 

Dr. Asaf Tzachor, explains, “the findings demonstrate that photosynthetically controlled Spirulina can produce desirable levels of active vitamin B12, offering a sustainable alternative to traditional animal-source foods.”

 

The study also explores production scale-up scenarios with profound implications for global nutrition. By reallocating electricity from heavy industry, Iceland could produce 277,950 tonnes of Spirulina biomass annually. This output translates to approximately 4555 grams of active vitamin B12 per year, meeting the recommended dietary allowance (RDA) for over 13.8 million children aged 1–3. More ambitious scenarios suggest the potential to meet the RDA for over 26.5 million children aged 1–3, and over 50 million children aged 0–6 months.

 

This breakthrough marks a significant step towards addressing global vitamin B12 deficiency sustainably, reducing reliance on environmentally taxing meat and dairy production.

 

In response to planetary and public health crises around the world, Reichman University, in partnership with the Aviram Foundation, established the Aviram Sustainability and Climate Program. The program trains outstanding students from all disciplines to develop solutions and strategies for addressing resource scarcities, climate change and extreme weather events, food, water, and energy crises, and more.

 



Journal

Discover Food

DOI

10.1007/s44187-024-00152-1

Method of Research

Experimental study

Subject of Research

People

Article Title

Photonic management of Spirulina (Arthrospira platensis) in scalable photobioreactors to achieve biologically active unopposed vitamin B12

Article Publication Date

7-Aug-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

First-ever observation of the transverse Thomson effect unveiled

August 23, 2025
blank

Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

August 23, 2025

New Molecular-Merged Hypergraph Neural Network Enhances Explainable Predictions of Solvation Gibbs Free Energy

August 22, 2025

Shaping the Future of Dysphagia Diets Through 3D Printing Innovations

August 22, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    136 shares
    Share 54 Tweet 34
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Food Insecurity and Diabetes: Pathways to Glycemic Control

Scoping Review: Delirium Detection Tools in Long-Term Care

Surviving Deserts: The Adaptive Genus Tribulus

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.