• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Breakthrough Oligomer-Based Organic Photodetector Achieves Peak Photoresponse at 1200 nm

Bioengineer by Bioengineer
November 11, 2025
in Chemistry
Reading Time: 4 mins read
0
Breakthrough Oligomer-Based Organic Photodetector Achieves Peak Photoresponse at 1200 nm
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a remarkable advancement poised to reshape the landscape of short-wavelength infrared (SWIR) detection, researchers at the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, have unveiled a novel organic semiconductor material that dramatically extends light absorption into the SWIR region. This breakthrough addresses a long-standing challenge in the field: engineering organic photodetectors (OPDs) capable of efficient and broad SWIR response, a feat traditionally dominated by high-cost inorganic semiconductor technologies such as InGaAs. Through meticulous molecular design and innovative end-group chemistry, the team, led by Professor Jun Liu, successfully harnessed J-aggregation to push the absorption spectrum significantly beyond typical organic limits, heralding a new era of flexible, cost-effective, and high-performance SWIR photodetection.

The significance of this achievement cannot be overstated. SWIR photodetection underpins critical applications ranging from non-invasive medical imaging and autonomous vehicle navigation to secure optical communications. While InGaAs and other III–V semiconductor-based photodetectors excel in performance metrics, their dependence on complex epitaxial manufacturing, high material costs, and inherent mechanical rigidity constrain their widespread adoption, especially in emerging fields demanding flexible and lightweight components. Organic photodetectors have long promised a solution, owing to their low processing costs, tunable optical properties, and mechanical flexibility. However, extending their response beyond approximately 1000 nm has remained an elusive goal, primarily due to the intrinsic limitations of molecular semiconductors in harvesting longer-wavelength photons.

Professor Liu and colleagues’ study presents a paradigm shift by exploiting a newly synthesized molecule named NBN-4, a thiophene-fused BODIPY tetramer equipped with meta-dicyanophenyl end groups that promote J-aggregation—a molecular packing motif characterized by head-to-tail arrangement of chromophores resulting in narrow, highly red-shifted absorption bands. This strategic cyanation end-group modification enhances the local dipole moment within the molecule to an impressive 7.64 Debye, markedly strengthening intermolecular electrostatic interactions. These interactions encourage robust J-aggregation, which cooperatively extends light absorption deep into the SWIR region, precisely measured at an absorption peak of 1205 nm. This elegant molecular engineering therefore overcomes a critical bottleneck in organic semiconductor photophysics.

Leveraging this molecular design, the NBN-4-based OPDs attain a peak responsivity of 0.15 A W⁻¹ and a specific detectivity nearing 4.78×10¹¹ Jones at 1200 nm—metrics that place these devices among the highest performing purely organic SWIR photodetectors reported to date. The superior detectivity reflects an optimized balance between light absorption, exciton generation, charge separation, and charge transport, all enabled by the tailored molecular structure. Such high detectivity in flexible and solution-processable materials offers immense potential for scalable manufacturing of infrared sensors beyond the confines of rigid, inorganic counterparts.

Delving deeper into the molecular phenomena underpinning this performance, the team applied a suite of computational and spectroscopic techniques. Density functional theory calculations revealed that the increased local dipole moment fostered tighter molecular packing within the solid-state film, facilitating efficient charge separation by mitigating recombination pathways. Ultrafast transient absorption spectroscopy further illuminated the photophysical dynamics, demonstrating a significantly accelerated exciton dissociation rate and more rapid hole transfer dynamics in the NBN-4 blend compared to control molecules lacking the end-group cyanation. These combined effects synergize to enhance charge carrier mobility and reduce loss mechanisms, crucial for achieving high responsivity under SWIR illumination.

This work not only spotlights the pivotal role of molecular end-group engineering but also emphasizes the power of J-aggregation in organic semiconductors for extending optical response. Unlike traditional strategies focusing solely on extending π-conjugation or altering backbone structures, the cyanation-induced J-aggregation accomplished here exemplifies a subtle yet highly effective tactic for modulating intermolecular interactions to tailor device-relevant properties. Professor Liu underscores this, remarking that “precisely engineered oligomer frameworks combined with tailored end-group chemistry represent a versatile and generalizable route to achieving J-aggregation, thereby enabling broadband organic semiconductor optical response well into the SWIR range.”

The implications of this breakthrough reverberate across numerous technological domains. The organic photodetectors built from NBN-4 exhibit not only outstanding SWIR sensitivity but also the intrinsic advantages of solution processability and mechanical flexibility. This positions them as frontrunners for integration into wearable electronics, biomedical monitoring devices requiring non-invasive infrared sensing, and artificial vision systems demanding lightweight and conformable photodetectors. Importantly, the material’s compatibility with scalable manufacturing methods like printing or coating advances the prospect of large-area flexible infrared sensor arrays at dramatically reduced costs.

Moreover, this innovation paves the way for future investigations into the design principles governing molecular aggregation and optical tuning within organic semiconductors. By elucidating how end-group modification impacts electronic dipoles and packing motifs, this study provides a blueprint for tailoring other classes of organic photonic materials toward customized spectral and electronic functionalities. The cyanation-driven J-aggregation concept may inspire new families of organic semiconductors extending beyond SWIR detection into applications like photovoltaics, photothermal therapy, and optoelectronic devices where precise control over absorption characteristics is paramount.

The researchers’ adoption of multifaceted experimental characterization complemented by theoretical modeling exemplifies a comprehensive approach to organic semiconductor research. This synergy between molecular synthesis, advanced spectroscopy, and computational chemistry continues to be instrumental in accelerating the discovery of high-performance materials with targeted optoelectronic properties. The insights gained here regarding local dipole enhancement and molecular packing effects can serve as guiding principles in the rational design of future organic materials with tailored functionalities.

In summary, the introduction of the NBN-4 molecule and its associated J-aggregation-induced spectral extension addresses one of the critical challenges limiting organic photodetectors’ applicability in the SWIR regime. Achieving peak responsivity and detectivity metrics rivaling those of established inorganic detectors, while maintaining the benefits of cost-effective, flexible, and lightweight devices, marks a significant milestone. As Professor Liu and the team look forward, they anticipate that this cyanation-driven aggregation strategy will catalyze the development of next-generation organic semiconductors fueling advances in infrared sensing technologies and beyond—opening new frontiers for wearable health monitoring, autonomous navigation, and secure communication systems.

This study, recently published in Science Bulletin, epitomizes the intersection of fundamental molecular science and practical device engineering, showcasing how subtle chemical design can unlock transformative functional properties in organic electronics. The promise of integrating these high-performance materials into flexible platforms stands to revolutionize the accessibility and application scope of SWIR photodetection, making it more ubiquitous and versatile than ever before.

Subject of Research: Organic semiconductors for short-wavelength infrared photodetection.

Article Title: Molecular Design Promoting J-Aggregation Enables Efficient Organic Photodetection at 1200 nm.

Web References: DOI: 10.1016/j.scib.2025.10.043

Keywords

Short-wavelength infrared; organic photodetectors; J-aggregation; molecular design; cyanation; BODIPY tetramer; dipole moment; exciton dissociation; charge separation; solution processing; flexible electronics; SWIR sensing

Tags: autonomous vehicle navigation systemschallenges in organic photodetector performancecost-effective SWIR solutionsflexible photodetector technologyhigh-performance SWIR photodetectionJ-aggregation in photonicsmolecular design in organic electronicsnon-invasive medical imaging technologiesnovel organic photodetectorsorganic semiconductor materialssecure optical communication advancementsshort-wavelength infrared detection

Tags: BODIPY tetramerEsnek elektronik **Açıklama:** * **Organik fotodedektörler:** Çalışmanın ana konusu. * **J-aggregation:** Performans artışını sağlayan temel moleküler fenomen. * **SWIR dedeksiyonu:** Hedeflenen uJ-aggregationMolecular end-group engineeringOligomer-based semiconductorsOrganic photodetector breakthroughOrganik fotodedektörlerSWIR dedeksiyonuSWIR photodetectors
Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Discover True Ferrielectric Material, Unveiling New Polar Order

Scientists Discover True Ferrielectric Material, Unveiling New Polar Order

November 11, 2025
blank

Revolutionary Laser Cooling Achieved: Stable Molecule Trapped Using Deep Ultraviolet Light

November 11, 2025

CYP152 Peroxygenases Pave a Sustainable Pathway to Chiral Molecules

November 11, 2025

SwRI Enhances Metering Research Facility to Advance Hydrogen Research and Testing

November 11, 2025

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Transforming Building Vents into Carbon Capture Technologies: A Revolutionary Innovation

Cancer Quality Improvement Initiative Reduces Missed Radiation Appointments by 40%

UTA Alum’s Research Paves the Way for Innovative New Treatments

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.