• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Breakthrough in nanostructure technology for real-time color display

Bioengineer by Bioengineer
March 11, 2024
in Chemistry
Reading Time: 3 mins read
0
Professor Kang Hee Ku and her research team at UNIST
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A groundbreaking technology that enables the real-time display of colors and shapes through changes in nanostructures has been developed. This innovative technology, pioneered by Professor Kang Hee Ku and her team in the School of Energy and Chemical Engineering at UNIST, has the potential to revolutionize various fields, such as smart polymer particles.

Professor Kang Hee Ku and her research team at UNIST

Credit: UNIST

A groundbreaking technology that enables the real-time display of colors and shapes through changes in nanostructures has been developed. This innovative technology, pioneered by Professor Kang Hee Ku and her team in the School of Energy and Chemical Engineering at UNIST, has the potential to revolutionize various fields, such as smart polymer particles.

Utilizing block copolymers, the research team has achieved the self-assembly of photonic crystal structures on a large scale, mimicking natural phenomena observed in butterfly wings and bird feathers. By reflecting the shape and direction of nanostructures, this technology allows for the visualization of vibrant colors and intricate patterns in real time.

Block copolymers, composed of two or more different monomers covalently bonded in a block shape, were strategically employed to induce phase separation using a non-mixing liquid droplet. Professor Ku emphasized the significance of this achievement, stating, “We have successfully generated hundreds of flawless photonic crystal structures through the autonomous organization of block copolymers, eliminating the need for external manipulation.”

Setting itself apart from conventional methods, this cutting-edge technology leverages internal nanostructures to create colors that are vivid, long-lasting, and sustainable. Furthermore, its enhanced applicability in display technology is evident through its capability to pattern large areas efficiently.

The key innovation lies in the use of a polymer that can dynamically adjust the size of microstructures within particles in response to changes in the external environment. By leveraging the unique properties of polystyrene-polyvinylpyridine (PS-b-P2VP) block copolymers, the structure, shape, and color of the particles can be tailored, reverting to their original state despite environmental variations.

Real-time monitoring of structural changes revealed that the size and color of micro-nanostructures adapt to fluctuations in alcohol concentration or pH value. Notably, the particles produced through this technology exhibit an innovative ‘Ice Cream Cone’ shape structure, combining aspects of solids and liquids to visualize fluid vibrations and dynamically alter shape and color in response to external stimuli.

Professor Ku showed confidence about the potential applications of this research, stating, “This study opens doors to the creation of self-assembling optical particles, streamlining the complex process conditions typically associated with colloidal crystal structure and pattern formation.” She further noted, “The technology’s practical applications in smart paint and polymer particles across various industries are envisioned.”

Published in the February 2024 issue of ACS Nano, the research received support from the National Research Foundation of Korea (NRF), the Ministry of Science and ICT (MSIT), and the Korea Toray Science Foundation, underscoring collaborative efforts driving this groundbreaking innovation.

Journal Reference
Juyoung Lee, Soohyun Ban, Kyuhyung Jo, et al., “Dynamic Photonic Janus Colloids with Axially Stacked Structural Layers,” ACS Nano, (2024).



Journal

ACS Nano

Article Title

Dynamic Photonic Janus Colloids with Axially Stacked Structural Layers

Article Publication Date

2-Feb-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Electrode Material on Radish Germination

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.