• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Breaking through the limits of stretchable semiconductors with molecular brakes that harness light

Bioengineer by Bioengineer
June 9, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Like the brakes that stop cars, a molecular brake exists that can prevent semiconductor chains from slipping, enabling the creation of more groundbreaking devices. Recently, a joint research team led by Professor Kilwon Cho and PhD candidates Seung Hyun Kim and Sein Chung from the Department of Chemical Engineering at POSTECH, and Professor Boseok Kang from the Department of Nano Engineering at Sungkyunkwan University (SKKU) has developed a technology for high-performance organic polymer semiconductors that exhibit both stretchability and electrical functionality. This study was recently featured on the inside back cover of Advanced Functional Materials.

Cover Image

Credit: POSTECH

Like the brakes that stop cars, a molecular brake exists that can prevent semiconductor chains from slipping, enabling the creation of more groundbreaking devices. Recently, a joint research team led by Professor Kilwon Cho and PhD candidates Seung Hyun Kim and Sein Chung from the Department of Chemical Engineering at POSTECH, and Professor Boseok Kang from the Department of Nano Engineering at Sungkyunkwan University (SKKU) has developed a technology for high-performance organic polymer semiconductors that exhibit both stretchability and electrical functionality. This study was recently featured on the inside back cover of Advanced Functional Materials.

 

For semiconductors to find applications in diverse flexible devices like flexible displays and skin-attachable medical devices, it is necessary to use stretchable materials instead of rigid ones. However, the force exerted during the stretching of semiconductors can be up to ten times greater than that experienced during simple bending, leading to the breakdown of the semiconductor layers and a decline in their electrical performance. Researchers have been diligently exploring methods to preserve semiconductor performance even under deformation, but a definitive solution to this challenge remains elusive.

 

The research team successfully created a flexible molecular photocrosslinker1 featuring azide-reactive groups at both ends. When exposed to ultraviolet light, this photocrosslinker forms a network structure with the polymer semiconductor, acting as a brake that prevents slipping even under stretching conditions. In contrast to conventional semiconductor materials, where polymer chains become intertwined and irreversibly slip and fracture when stretched, the presence of this “brake” allows the polymer chains to retain their stretchability and performance without any slipping.

Using this approach, the research team successfully preserved up to 96 percent of the electrical performance of the polymer semiconductor, even when it was stretched to 80 percent. Moreover, the semiconductor exhibited significantly enhanced stretchability and durability compared to conventional semiconductors, clearly demonstrating the effectiveness of the developed technology.

 

Professor Kilwon Cho explained, “By incorporating azide photocrosslinkers into the films, we have successfully preserved the excellent electrical properties of polymer semiconductors for organic thin-film transistors even under significant mechanical deformation. This simple approach significantly enhances the stretchability and UV-patternability of organic semiconducting polymers, making it highly valuable for industries requiring large-area production and photolithography for the development of next-generation flexible electronics.”

 

This study was conducted with the support of the Mid-career Researcher Program of the National Research Foundation of Korea and the Strategic Reinforcement of International Cooperation Network of the Ministry of Science and ICT of Korea.



Journal

Advanced Functional Materials

DOI

10.1002/adfm.202370142

Article Title

Designing a Length-Modulated Azide Photocrosslinker to Improve the Stretchability of Semiconducting Polymers

Article Publication Date

2-Jun-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

August 28, 2025
Unlocking the Potential of In-Between Quantum States to Revolutionize Future Technologies

Unlocking the Potential of In-Between Quantum States to Revolutionize Future Technologies

August 28, 2025

When Ocean Waves Reach the Shoreline

August 28, 2025

Innovative Algorithm Paves the Way for Enhanced Noise Reduction in Quantum Devices

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mitophagy and Proteasomal Degradation Defend Postnatal Muscle Health

Transplant Policies: Undocumented Immigrants vs. Tourists

Revolutionizing Primary Care with Generative AI Solutions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.