• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Breaking through barriers

Bioengineer by Bioengineer
February 8, 2024
in Health
Reading Time: 3 mins read
0
Figure 1. Some drugs can cross the placental barrier and reach the fetus
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Tokyo Medical and Dental University (TMDU) overcome scientific roadblocks and develop a model to assess the biology of the human placental barrier

Figure 1. Some drugs can cross the placental barrier and reach the fetus

Credit: Department of Diagnostic and Therapeutic Systems Engineering, TMDU

Researchers from Tokyo Medical and Dental University (TMDU) overcome scientific roadblocks and develop a model to assess the biology of the human placental barrier

Tokyo, Japan – During pregnancy, the human placenta plays multiple essential roles, including hormone production and nutrient/waste processing. It also serves as a barrier to protect the developing fetus from external toxic substances. However, the placental barrier can still be breached by certain drugs. In a recent article published in Nature Communications, a team led by researchers at Tokyo Medical and Dental University (TMDU) developed a trophoblast stem (TS) cell-based organoid model of the placental barrier to support further biological research.   

Villi in the human placenta  help form  the barrier  and are surrounded by a layer of cells called trophoblasts. Because the structural nature of villi is critical for its function, cell lines and other methods  used to replicate placental physiology in laboratory experiments have proven inadequate. Primary placental cells are also difficult to maintain in culture. Therefore, the TMDU group aimed to develop an effective in vitro model of placental villi using TS cells.

“TS cells have the capacity to differentiate into all kinds of placental cells consisting of the human placenta.,” says Dr. Takeshi Hori, lead author of the study. “However, it has been challenging to make the barrier model using TS cells.”

First of all, the team then generated trophoblast organoids, a type of three-dimensional cell model that can more effectively mimic the structural and biological details of an organ. After testing three types of culture medium, they determined the optimal conditions to support the formation of spherical organoids.

“The outer layer of the organoid contained a single layer of cells called syncytiotrophoblasts,” explains Dr. Hirokazu Kaji, senior author. “This layer effectively displayed the barrier function that we were aiming to mimic with this model.”

Based on the culture conditions of the spherical organoids, the researchers established flatter organoids with a column-type container to easily asses the translocation of compounds through the barrier layer. The researchers used various methods to confirm the barrier integrity and maturation levels of the plane organoids and to ensure the robustness of the system. Their analysis also showed that the model could be used to assess how well different compounds could cross the barrier, specifically by examining the permeability coefficients.

“Using the organoids as a model of the placental barrier will help scientists better understand general placental biology and potential drug toxicity,” says Dr. Hori. “We also designed our model in a manner such that the cells could be easily cultured and it could be evaluated using microscopic observation.”

The TS cell-based organoid model generated in this study effectively addresses many of the difficulties that have previously hampered laboratory-based assessments of placental physiology. It will be a useful tool for not only elucidating details of the development of this organ, but also for evaluating the transfer rates and toxicity levels of various compounds. This will be critical in the drug development process to avoid damaging the placenta or harming the fetus.

###

The article, “Trophoblast stem cell-based organoid models of the human placental barrier,” was published in Nature Communications at DOI: 10.1038/s41467-024-45279-y
 



Journal

Nature Communications

DOI

10.1038/s41467-024-45279-y

Article Title

Trophoblast stem cell-based organoid models of the human placental barrier

Article Publication Date

8-Feb-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

How Blood Tests Are Transforming Spinal Cord Injury Recovery

September 23, 2025

New Assays Identify 12 Animal Species, Humans

September 23, 2025

Lactate IV Infusion Stimulates Hormone Release Linked to Post-Workout Brain Boost, Study Finds

September 23, 2025

Chiral Analysis of Etomidate Enantiomers in Hair

September 23, 2025

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How Blood Tests Are Transforming Spinal Cord Injury Recovery

New Assays Identify 12 Animal Species, Humans

Lactate IV Infusion Stimulates Hormone Release Linked to Post-Workout Brain Boost, Study Finds

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.