• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Breaking the size and speed limit of modulators: The workhorses of the internet

Bioengineer by Bioengineer
April 13, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

GW researchers develop fast, micrometer-size electro-optical modulator

IMAGE

Credit: Mario Miscuglio and Rubab Amin


SUMMARY

Researchers developed and demonstrated for the first time a silicon-based electro-optical modulator that is smaller, as fast as and more efficient than state-of-the-art technologies. By adding indium tin oxide (ITO) – a transparent conductive oxide found in touchscreen displays and solar cells – to a silicon photonic chip platform, the researchers were able to create a compact device 1 micrometer in size and able to yield gigahertz-fast, or 1 billion times per second, signal modulation.

Electro-optical modulators are the workhorses of the internet. They convert electrical data from computers and smartphones to optical data streams for fiber optic networks, enabling modern data communications like video streaming. The new invention is timely since demand for data services is growing rapidly and moving towards next generation communication networks. Taking advantage of their compact footprint, electro-optic converters can be utilized as transducers in optical computing hardware such as optical artificial neural networks that mimic the human brain and a plethora of other applications for modern-day life.

THE SITUATION

Electro-optical modulators in use today are typically between 1 millimeter and 1 centimeter in size. Reducing their size allows increased packaging density, which is vital on a chip. While silicon often serves as the passive structure on which photonic integrated circuits are built, the light matter interaction of silicon materials induces a rather weak optical index change, requiring a larger device footprint. While resonators could be used to boost this weak electro-optical effect, they narrow devices’ optical operating range and incur high energy consumption from required heating elements.

THE SOLUTION

By heterogeneously adding a thin material layer of indium tin oxide to the silicon photonic waveguide chip, researchers at the George Washington University, led by Volker Sorger, an associate professor of electrical and computer engineering, have demonstrated an optical index change 1,000 times larger than silicon. Unlike many designs based on resonators, this spectrally-broadband device is stable against temperature changes and allows a single fiber-optic cable to carry multiple wavelengths of light, increasing the amount of data that can move through a system.

FROM THE RESEARCHER

“We are delighted to have achieved this decade-long goal of demonstrating a GHz-fast ITO modulator. This sets a new horizon for next-generation photonic reconfigurable devices with enhanced performance yet reduced size,” said Dr. Sorger

###

OTHER INFORMATION

The paper, “Broadband Sub-λ GHz ITO Plasmonic Mach Zehnder Modulator on Silicon Photonics,” was published today in the journal Optica.

To schedule an interview with Dr. Sorger about the new device, please contact Timothy Pierce at [email protected] or 202-994-5647.

This technology is covered by several patent applications and is available for licensing (US Patent App. 16/545,733).

Media Contact
Timothy Pierce
[email protected]

Original Source

https://mediarelations.gwu.edu/breaking-size-and-speed-limit-modulators-workhorses-internet

Related Journal Article

http://dx.doi.org/10.1364/OPTICA.389437

Tags: Electrical Engineering/ElectronicsNanotechnology/MicromachinesResearch/DevelopmentRobotry/Artificial IntelligenceTechnology/Engineering/Computer ScienceTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

UofL Study Reveals Amplified Liver Damage from Combined Exposure to Alcohol and “Forever Chemicals”

UofL Study Reveals Amplified Liver Damage from Combined Exposure to Alcohol and “Forever Chemicals”

August 5, 2025
blank

Zero-Dimensional Octahedral Metal Halides Synthesized via Solvent Incorporation

August 5, 2025

New Study Reveals How Diatoms Thrive and Illuminate the Southern Ocean

August 4, 2025

Mapping Brain Chemistry Through Humanity’s Evolutionary Journey

August 4, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    71 shares
    Share 28 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Shaping Childhood Obesity: Social and Family Impacts

Beeswax-Taro Starch Bigels: Ratio Impacts Structure

Impact of \({\varvec{\gamma}}\)-Al2O3 Coating on Lithium-Ion Dynamics

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.