• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Breaking into tears with microrheology to design custom eye drops

Bioengineer by Bioengineer
July 11, 2023
in Biology
Reading Time: 3 mins read
0
Studying volumes of tears on the microscale
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, July 11, 2023 – Compared to artificial tears, or eye drops, human tears are significantly more complex liquids, with a wide range of components including lipids, carbohydrates, proteins, water, and salt. It is this complex mixture that gives tears the perfect thickness and ability to moisturize the eye, a design that is hard to replicate with fewer ingredients.

Studying volumes of tears on the microscale

Credit: Juan F. Vega and Itxaso Calafel

WASHINGTON, July 11, 2023 – Compared to artificial tears, or eye drops, human tears are significantly more complex liquids, with a wide range of components including lipids, carbohydrates, proteins, water, and salt. It is this complex mixture that gives tears the perfect thickness and ability to moisturize the eye, a design that is hard to replicate with fewer ingredients.

In Physics of Fluids, from AIP Publishing, Vega et al. researched human tears at the micron level to reveal new ways of customizing artificial tears to address individual symptoms of dry eye disease. The detailed insights they gained about the composition and behavior of tears could also apply to the study of ocular pathogens, as well as other biological fluids.

“Tailoring formulations and characteristics to meet individual requirements are key considerations in achieving efficacy,” author Juan F. Vega said. “The ultimate goal is to provide an effective and personalized solution that alleviates dry eye syndrome.”

The authors collected healthy human tears and tested 10 different formulations of artificial tears, probing these liquids to understand properties such as viscosity (flow), elasticity and stability and the effects of different concentrations of components in the liquids. They also tested the behavior of the liquids under stress, such as when the eye blinks.

To study the tiny volumes of liquid in tears, the authors applied microrheology methods, which monitor the movement of micron-sized particles in liquids, using a technique that measures how light reflects off particles suspended in liquid to reveal how the liquid behaves in different scenarios, known as dynamic light scattering, or DLS.

The authors’ unique application of these methods to the study of tears has implications both for the fundamental knowledge of microbiological fluids and for the design of functional materials with specific desired properties, Vega said.

“The goal of investigating these characteristics is to understand the behavior of the fluid and gain insights into its performance and potential applications – for example, cosmetics, pharmaceuticals, or food – where understanding the viscoelastic properties helps in formulating products with desirable textures, stability, and flow behavior,” Vega said.

The authors plan to continue to explore more complex formulations of artificial tears and extend their work to the study of human tears with different pathologies.

“Through careful tuning, artificial tears can be tailored to meet specific needs, such as stability, lubrication, and moisturization, and mimicking natural tears,” Vega said. “Ultimately, this work aims to enhance the comfort and well-being of individuals experiencing dry eye symptoms.”

###

The article “Shedding light on the viscoelastic behavior of artificial and human tears: A microrheological approach” is authored by Juan F. Vega, Mercedes Fernández, Andrés Cardil, Itxaso Calafel, Itziar Martínez-Soroa, Ane Pérez Sarriegui, and Arantxa Acera. It will appear in Physics of Fluids on July 11, 2023 (DOI: 10.1063/5.0152482). After that date, it can be accessed at https://doi.org/10.1063/5.0152482.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex fluids. See https://pubs.aip.org/aip/pof.

###



Journal

Physics of Fluids

DOI

10.1063/5.0152482

Article Title

Shedding light on the viscoelastic behavior of artificial and human tears: A microrheological approach

Article Publication Date

11-Jul-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Tanshinone I Shields Against Osteonecrosis by Activating Nrf2

September 30, 2025

Exploring Otoliths in Periophthalmodon schlosseri from Vietnam

September 30, 2025

Unstructured Protein Segments: The Key to Regulating Biological Functions

September 30, 2025

Wing Shape Adaptations Enable Small Hoverflies to Maintain Flight

September 30, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    88 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    60 shares
    Share 24 Tweet 15
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cardiovascular Disease Influences Colorectal Cancer Outcomes

NRF2 Enhances Ovarian Cancer Cell Migration via TAGLN

Family, Clinician Views on CHD LIFE Care Pathway

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.