• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Brain scientists at TU Dresden examine brain networks during short-term task learning

Bioengineer by Bioengineer
November 3, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Holger Mohr et al.

This works especially efficient when we are guided by explicit instructions. A team of researchers at TU Dresden has now examined the underlying neural processes in a current imaging study. The results of the study are published today in the prestigious scientific journal Nature Communications under the title „Integration and segregation of large-scale brain networks during short-term task automatization".

Within the collaborative research center 940 'volition and cognitive control' sponsored by the DFG (German Science Foundation), the brain scientists Holger Mohr, Uta Wolfensteller, and Hannes Ruge from the Department of Psychology at Technische Universität Dresden (Germany) in collaboration with colleagues from the USA and Switzerland examined the neural processes responsible for the automatization of instruction-based tasks. Their research approach embraced the currently popular assumption that mental functions like memory or language do emerge from specific patterns of communication within and between subnetworks of the brain. Going beyond this basic assumption, it was examined whether a rapid reorganization of these communication patterns is possible – specifically during the rapid instruction-based automatization of novel tasks. Previous studies in this context mainly focused on long-term changes.

The results of this current study suggest that rapid instruction-based task automatization is facilitated by rapidly increasing communication between subnetworks associated with the transformation of visual information into motor responses. At the same time, this is accompanied by a release of network resources initially serving the controlled and attention-demanding implementation of the instructed task – while the so-called default mode network is increasingly decoupled from task-related networks. Together, these findings suggest that rapid instruction-based task automatization is indeed reflected by a rapid system-level reorganization of network communications distributed across the entire brain.

###

Please find the complete paper at: http://www.nature.com/articles/ncomms13217

https://tu-dresden.de/mn/psychologie/allgpsy/die-professur/mitarbeiter/utawolfensteller/agneuro

Media Contact

Holger Mohr
[email protected]
49-351-463-42432
@tudresden_de

http://tu-dresden.de/en

Share12Tweet8Share2ShareShareShare2

Related Posts

Unifying Understanding of Endoplasmic Reticulum Exit Sites

November 14, 2025

Novel Fluorogenic Sensor Detects Hydrogen Peroxide Colorfully

November 14, 2025

Smart Skin Electronics Enhance Gesture Recognition Technology

November 14, 2025

Mitigating Matrix Effects in AAV Neutralization Assays

November 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    142 shares
    Share 57 Tweet 36

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unifying Understanding of Endoplasmic Reticulum Exit Sites

Novel Fluorogenic Sensor Detects Hydrogen Peroxide Colorfully

Smart Skin Electronics Enhance Gesture Recognition Technology

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.