• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Brain plasticity: How adult-born neurons get wired-in

Bioengineer.org by Bioengineer.org
January 24, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UAB

BIRMINGHAM, Ala. – One goal in neurobiology is to understand how the flow of electrical signals through brain circuits gives rise to perception, action, thought, learning and memories.

Linda Overstreet-Wadiche, Ph.D., and Jacques Wadiche, Ph.D., both associate professors in the University of Alabama at Birmingham Department of Neurobiology, have published their latest contribution in this effort, focused on a part of the brain that helps form memories — the dentate gyrus of the hippocampus.

The dentate gyrus is one of just two areas in the brain where new neurons are continuously formed in adults. When a new granule cell neuron is made in the dentate gyrus, it needs to get 'wired in,' by forming synapses, or connections, in order to contribute to circuit function. Dentate granule cells are part of a circuit that receive electrical signals from the entorhinal cortex, a cortical brain region that processes sensory and spatial input from other areas of the brain. By combining this sensory and spatial information, the dentate gyrus can generate a unique memory of an experience.

Overstreet-Wadiche and UAB colleagues posed a basic question: Since the number of neurons in the dentate gyrus increases by neurogenesis while the number of neurons in the cortex remains the same, does the brain create additional synapses from the cortical neurons to the new granule cells, or do some cortical neurons transfer their connections from mature granule cells to the new granule cells?

Their answer, garnered through a series of electrophysiology, dendritic spine density and immunohistochemistry experiments with mice that were genetically altered to produce either more new neurons or kill off newborn neurons, supports the second model — some of the cortical neurons transfer their connections from mature granule cells to the new granule cells.

This opens the door to look at how this redistribution of synapses between the old and new neurons helps the dentate gyrus function. And it opens up tantalizing questions. Does this redistribution disrupt existing memories? How does this redistribution relate to the beneficial effects of exercise, which is a natural way to increase neurogenesis?

"Over the last 10 years there has been evidence supporting a redistribution of synapses between old and new neurons, possibly by a competitive process that the new cells tend to 'win,'" Overstreet-Wadiche said. "Our findings are important because they directly demonstrate that, in order for new cells to win connections, the old cells lose connections. So, the process of adult neurogenesis not only adds new cells to the network, it promotes plasticity of the existing network."

"It will be interesting to explore how neurogenesis-induced plasticity contributes to the function of this brain region," she continued. "Neurogenesis is typically associated with improved acquisition of new information, but some studies have also suggested that neurogenesis promotes 'forgetting' of existing memories."

The researchers also unexpectedly found that the Bax gene, known for its role in apoptosis, appears to also play a role in synaptic pruning in the dentate gyrus.

"There is mounting evidence that the cellular machinery that controls cell death also controls the strength and number of synaptic connections," Overstreet-Wadiche said. "The appropriate balance of synapses strengthening and weakening, collectively termed synaptic plasticity, is critical for appropriate brain function. Hence, understanding how synaptic pruning occurs may shed light on neurodevelopmental disorders and on neurodegenerative diseases in which a synaptic pruning gone awry may contribute to pathological synapse loss."

###

All of the work was performed in the Department of Neurobiology at UAB. In addition to Overstreet-Wadiche and Wadiche, co-authors of the paper, "Adult born neurons modify excitatory synaptic transmission to existing neurons," published in eLife, are Elena W. Adlaf, Ryan J. Vaden, Anastasia J. Niver, Allison F. Manuel, Vincent C. Onyilo, Matheus T. Araujo, Cristina V. Dieni, Hai T. Vo and Gwendalyn D. King.

Much of the data came from the doctoral thesis research of Adlaf, a former UAB Neuroscience graduate student who is now a postdoctoral fellow at Duke University.

Media Contact

Jeff Hansen
[email protected]
205-209-2355

http://www.uab.edu

Share12Tweet8Share2ShareShareShare2

Related Posts

Advancing Liver Transplantation for Cancer with Genomics

September 13, 2025
Exploring Water Absorption in Footballs: Leather vs. Synthetic

Exploring Water Absorption in Footballs: Leather vs. Synthetic

September 13, 2025

Grape and Olive Waste Transformed Into Asphalt Antioxidants

September 13, 2025

Enhancing Co-Composting: Quicklime Boosts Nutrient Recovery

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancing Liver Transplantation for Cancer with Genomics

Exploring Water Absorption in Footballs: Leather vs. Synthetic

Grape and Olive Waste Transformed Into Asphalt Antioxidants

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.