• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Brain-on-a-chip would need little training

Bioengineer by Bioengineer
April 20, 2021
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © 2021 KAUST

A biomimicking “spiking” neural network on a microchip has enabled KAUST researchers to lay the foundation for developing more efficient hardware-based artificial intelligence computing systems.

Artificial intelligence technology is developing rapidly, with an explosion of new applications across advanced automation, data mining and interpretation, healthcare and marketing, to name a few. Such systems are based on a mathematical artificial neural network (ANN) composed of layers of decision-making nodes. Labeled data is first fed into the system to “train” the model to respond a certain way, then the decision-making rules are locked in and the model is put into service on standard computing hardware.

While this method works, it is a clunky approximation of the far more complex, powerful and efficient neural network that actually makes up our brains.

“An ANN is an abstract mathematic model that bears little resemblance to real nervous systems and requires intensive computing power,” says Wenzhe Guo, a Ph.D. student in the research team. “A spiking neural network, on the other hand, is constructed and works in the same way as the biological nervous system and can process information in a faster and more energy-efficient way.”

Spiking neural networks (SNNs) emulate the structure of the nervous system as a network of synapses that transmit information via ion channels in the form of action potential, or spikes, as they occur. This event-driven behavior, implemented mathematically as a “leaky integrate-and-fire model,” makes SNNs very energy efficient. Plus, the structure of interconnected nodes provides a high degree of parallelization, which further boosts processing power and efficiency. It also lends itself to implementation directly in computing hardware as a neuromorphic chip.

“We used a standard low-cost FPGA microchip and implemented a spike-timing-dependent plasticity model, which is a biological learning rule discovered in our brain,” says Guo.

Importantly, this biological model does not need teaching signals or labels, allowing the neuromorphic computing system to learn real-world data patterns without training.

“Since SNN models are very complex, our main challenge was to tailor the neural network settings for optimal performance,” says Guo. “We then designed the optimal hardware architecture considering a balance of cost, speed and energy consumption.”

The team’s brain-on-a-chip proved to be more than 20 times faster and 200 times more energy efficient than other neural network platforms.

“Our ultimate goal is to build a compact, fast and low-energy brain-like hardware computing system. The next step is to improve the design and optimize product packaging, miniaturize the chip and customize it for various industrial applications through collaboration,” Guo says.

###

Media Contact
Michael Cusack
[email protected]

Original Source

https://discovery.kaust.edu.sa/en/article/1122/brain-on-a-chip-would-need-little-training

Related Journal Article

http://dx.doi.org/10.1109/TNNLS.2021.3055421

Tags: Algorithms/ModelsCalculations/Problem-SolvingComputer ScienceMultimedia/Networking/Interface DesignRobotry/Artificial IntelligenceSoftware EngineeringSystems/Chaos/Pattern Formation/ComplexityTechnology/Engineering/Computer ScienceTheory/Design
Share12Tweet8Share2ShareShareShare2

Related Posts

Cachexia Index Predicts Gastric Cancer Impact

Cachexia Index Predicts Gastric Cancer Impact

August 9, 2025
blank

Non-Coding Lung Cancer Genes Found in 13,722 Chinese

August 9, 2025

Unraveling Mitophagy in Bronchopulmonary Dysplasia

August 9, 2025

Sericin Silver Nanoparticles Combat Colorectal Cancer Effectively

August 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    137 shares
    Share 55 Tweet 34
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    77 shares
    Share 31 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    55 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cachexia Index Predicts Gastric Cancer Impact

Non-Coding Lung Cancer Genes Found in 13,722 Chinese

Unraveling Mitophagy in Bronchopulmonary Dysplasia

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.