• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Brain imaging lie detector can be beaten with simple techniques, research shows

Bioengineer by Bioengineer
May 3, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have shown that a brain imaging technique called fMRI can be beaten by the use of two particular mental countermeasures

People have certain physical ‘tells’ when they conceal information – and studies show that good liars can prevent these ‘tells’ being detected by displaying physical red herrings of their own.

But scientists have now shown that even a brain imaging technique called fMRI, which in theory is much harder to trick, can be beaten by people who use two particular mental countermeasures.

The work was led by Drs Chun-Wei Hsu and Giorgio Ganis at the University of Plymouth, in collaboration with the University of Padova, Italy, and published in the journal Human Brain Mapping.

This research is the first to explore the effects of mental countermeasures on brain activity in functional magnetic resonance imaging (fMRI) – and it showed that when people used the countermeasures, the test proved to be 20% less accurate.

How do concealed information tests work?

Concealed information tests work because a person who is hiding something will ‘give away’ what they are concealing when faced with it in a list. For example, if a thief has stolen a diamond ring, the ring will be more striking to the thief than similar control items such as necklaces and bracelets – and the thief will show physiological signs (e.g. sweating) that reveal their guilt.

However, these tests based on physiological signs are easy to beat as perpetrators can artificially alter them when seeing a control item, therefore confusing the test. To overcome this problem, researchers moved to methods that look directly at brain activation using fMRI.

An fMRI machine tracks blood flow to activated brain areas. The assumption in concealed information detection is that the brain will show signs of recognition when presented with the concealed items while exerting extra effort to conceal signs of such recognition, and so the brain regions that do more work will get more blood. Such regions light up in scans, and they are primarily involved in directing attention and in decision making.

What did the study show?

In the new study, participants were asked to conceal information about a ‘secret’ digit they saw inside an envelope.

Researchers taught 20 participants two mental countermeasures. The first was to associate meaningful memories to the control items, making them more significant. The second was to focus on the superficial aspects of the item they were trying to conceal, rather than on the experience of familiarity it evokes, in order to make it less significant.

The results showed that these countermeasures lowered the accuracy of the test by about 20% because it was more difficult for fMRI to find any differences in brain activity. Thus, participants were more likely to be able to hide their concealed information item when using the mental countermeasures.

The research team concluded that in order to improve the robustness of the test, future work needed to identify a way of detecting mental countermeasures, and potentially look at conducting whole-brain analyses, rather than just examining regions of interest.

Lead author Dr Chun-Wei Hsu, a researcher in the CogNovo research programme at the University of Plymouth, said: “fMRI tests are not currently used by law enforcement in the same way as polygraph tests, but they have been considered for scientific and criminal use as a way of detecting when someone is concealing information. This study shows that the process can be manipulated if someone associates meaningful memories to the control items, or focuses on the aesthetics, rather than the memory, of the item they’re trying to hide.

“None of our participants were seasoned liars or criminals, they were just everyday people, so before this test can even be considered for forensic use, there must be further studies carried out to help identify when someone is using mental countermeasures.

“Deception is a really challenging area of psychology, and the more we can find out about the techniques used to detect it, the better.”

Dr Ganis is one of the lead researchers at the upcoming Brain Research & Imaging Centre, which will open in 2020 as the most advanced multi-modal brain imaging facility in the South West.

###

The full study, entitled The effect of mental countermeasures on neuroimaging-based concealed information tests, was carried out by the University of Plymouth and the University of Padova, Italy. It is available to view now in the journal Human Brain Mapping (doi: 10.1002/hbm24567).

Media Contact
Amy King
[email protected]
http://dx.doi.org/10.1002/hbm24567

Tags: BehaviorMemory/Cognitive ProcessesneurobiologyNeurochemistryPerception/AwarenessSocial/Behavioral Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Three-Step Forensic Method Differentiates Human, Pig Nails

Three-Step Forensic Method Differentiates Human, Pig Nails

August 6, 2025
Decoding Gaming Disorder: Insights from Network Analysis

Decoding Gaming Disorder: Insights from Network Analysis

August 6, 2025

Two Decades of Progress in Congenital Heart Disease

August 6, 2025

Long-Term Relief: Mind-Body Therapy Shows Lasting Benefits for Back Pain in RESTORE Trial Three-Year Follow-Up

August 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    74 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Three-Step Forensic Method Differentiates Human, Pig Nails

Human Leishmaniasis in Algeria: A Comprehensive Review

Revealing Electric Double Layer Structures at Nucleation Sites: A Key Breakthrough for Understanding Electrochemical Cells and Batteries

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.