• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Brain imaging headband measures how our minds align when we communicate

Bioengineer by Bioengineer
February 27, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Drexel University

Great ideas so often get lost in translation — from the math teacher who can't get through to his students, to a stand-up comedian who bombs during an open mic night.

But how can we measure whether our audiences understand what we're trying to convey? And better yet, how can we improve that exchange?

Drexel University biomedical engineers, in collaboration with Princeton University psychologists, are using a wearable brain-imaging device to see just how brains sync up when humans interact. It is one of many applications for this functional near-infrared spectroscopy (or fNIRS) system, which uses light to measure neural activity during real-life situations and can be worn like a headband.

Published in Scientific Reports on Monday, a new study shows that the fNIRS device can successfully measure brain synchronization during conversation. The technology can now be used to study everything from doctor-patient communication, to how people consume cable news.

"Being able to look at how multiple brains interact is an emerging context in social neuroscience," said Hasan Ayaz, PhD, an associate research professor in Drexel's School of Biomedical Engineering, Science and Health Systems, who led the research team. "We live in a social world where everybody is interacting. And we now have a tool that can give us richer information about the brain during everyday tasks — such as natural communication — that we could not receive in artificial lab settings or from single brain studies."

The current study is based on previous research from Uri Hasson, PhD, associate professor at Princeton University, who has used functional Magnetic Resonance Imaging (fMRI) to study the brain mechanisms underlying the production and comprehension of language. Hasson has found that a listener's brain activity actually mirrors the speaker's brain when he or she is telling story about a real-life experience. And higher coupling is associated with better understanding.

However, traditional brain imaging methods have certain limitations. In particular, fMRI requires subjects to lie down motionlessly in a noisy scanning environment. With this kind of set-up, it is not possible to simultaneously scan the brains of multiple individuals who are speaking face-to-face.

This is why the Drexel researchers sought to investigate whether the portable fNIRS system could be a more effective approach to probe the brain-to-brain coupling question in natural settings.

For their study, a native English speaker and two native Turkish speakers told an unrehearsed, real-life story in their native language. Their stories were recorded and their brains were scanned using fNIRS. Fifteen English speakers then listened to the recording, in addition to a story that was recorded at a live storytelling event.

The researchers targeted the prefrontal and parietal areas of the brain, which include cognitive and higher order areas that are involved in a person's capacity to discern beliefs, desires and goals of others. They hypothesized that a listener's brain activity would correlate with the speaker's only when listening to a story they understood (the English version). A second objective of the study was to compare the fNIRS results with data from a similar study that had used fMRI, in order to compare the two methods.

They found that when the fNIRS measured the oxygenation and deoxygenation of blood cells in the test subject's brains, the listeners' brain activity matched only with the English speakers. These results also correlated with the previous fMRI study.

This new research supports fNIRS as a viable future tool to study brain-to-brain coupling during social interaction. The system can be used to offer important information about how to better communicate in many different environments, including classrooms, business meetings, political rallies and doctors' offices.

"This would not be feasible with fMRI. There are too many challenges," said Banu Onaral, PhD, the H. H. Sun Professor in the School of Biomedical Engineering, Science and Health Systems. "Now that we know fNIRS is a feasible tool, we are moving into an exciting era when we can know so much more about how the brain works as people engage in everyday tasks."

###

This study was conducted at the Cognitive Neuroengineering and Quantitative Experimental Research (CONQUER) Collaborative, a multi-disciplinary brain observatory at Drexel University.

Media Contact

Lauren Ingeno
[email protected]
215-895-2614
@DrexelNews

http://www.Drexel.edu/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Decision Framework Aids Post-DRd Myeloma Care

October 31, 2025
Korean Researchers Develop Self-Stacking Lithium Electrode to Prevent EV Battery Explosions

Korean Researchers Develop Self-Stacking Lithium Electrode to Prevent EV Battery Explosions

October 31, 2025

Bayesian Sequential Palpation Enhances Bimodal Tactile Tomography for Intracavitary Microstructure Profiling and Segmentation

October 31, 2025

Machine Learning Enhances Vocational Training Impact Prediction

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1293 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decision Framework Aids Post-DRd Myeloma Care

Korean Researchers Develop Self-Stacking Lithium Electrode to Prevent EV Battery Explosions

Bayesian Sequential Palpation Enhances Bimodal Tactile Tomography for Intracavitary Microstructure Profiling and Segmentation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.