• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Brain diseases are better classified using analysis of gene activity

Bioengineer by Bioengineer
April 20, 2023
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research led by Yashar Zeighami at McGill University, Canada provides a new way to characterize brain diseases. The study, publishing in the open access journal PLOS Biology on April 20th shows that comparing the transcriptomes (the map of activity for all genes in the genome) related to different brain diseases can help us understand the mechanisms underlying the diseases, and why certain ones are comorbid. The method can also find new relationships among diseases, which could have an impact on clinical treatment options.

Brain diseases are better classified using analysis of gene activity

Credit: Zeighami Y, et al., 2023, PLOS Biology, CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/)

Research led by Yashar Zeighami at McGill University, Canada provides a new way to characterize brain diseases. The study, publishing in the open access journal PLOS Biology on April 20th shows that comparing the transcriptomes (the map of activity for all genes in the genome) related to different brain diseases can help us understand the mechanisms underlying the diseases, and why certain ones are comorbid. The method can also find new relationships among diseases, which could have an impact on clinical treatment options.

Classifying brain diseases is difficult because many have multiple genetic and environmental risk factors. On top of that, the symptoms of many brain diseases overlap. For example, Parkinson’s disease and dementia with Lewy bodies are both neurodegenerative disorders presenting with muscle tremors and rigidity, and which share some similar cognitive and behavioral symptoms. In this and other similar cases, misdiagnosis is not uncommon and can have serious consequences for patient care. An alternative approach is to classify brain diseases based on gene activity. The new study examined disease transcriptomes—the set of RNA transcripts from affected brain regions—for 40 different brain diseases.

The researchers found that this system could classify brain diseases into five primary groups based on where disease-risk genes were active in the brain and in which cell types. In addition to confirming known relationships among diseases, disease transcriptome analysis was able to find previously unknown relationships among diseases. For example, language development disorders, obsessive-compulsive disorder, and temporal lobe epilepsy were all classified into group 3, meaning that despite their very different symptoms, their corresponding genes are active in the same brain regions and in the same cell types. Brain diseases classified as neurodegenerative, movement-related, and psychiatric are the most difficult to diagnose because of the overlap in symptoms that change over time. The transcriptome is thus an additional tool that could be used for more accurate early diagnoses.

Zeighami adds, “Analysis of the transcription patterns of risk genes for human brain disease reveals characteristic expression signatures across brain anatomy. These can be used to compare and aggregate diseases, providing associations that often differ from conventional phenotypic classification.”

#####

In your coverage, please use this URL to provide access to the freely available paper in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3002058

Citation: Zeighami Y, Bakken TE, Nickl-Jockschat T, Peterson Z, Jegga AG, Miller JA, et al. (2023) A comparison of anatomic and cellular transcriptome structures across 40 human brain diseases. PLoS Biol 21(4): e3002058. https://doi.org/10.1371/journal.pbio.3002058

Author Countries: Canada, United States

Funding: see manuscript



Journal

PLoS Biology

DOI

10.1371/journal.pbio.3002058

Method of Research

Observational study

Subject of Research

People

COI Statement

Competing interests: The authors have declared that no competing interests exist.

Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Aged Garlic Extract’s Effects on Oral Bacteria

August 27, 2025

Blood and Fluid Signatures Predict IVF Embryo Success

August 27, 2025

Enhancing 3D-Printed Biphasic Scaffolds with Hourglass Design

August 27, 2025

Fluoxetine’s Impact on Weight and Waist Size

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Aged Garlic Extract’s Effects on Oral Bacteria

METTL3-Driven m6A Boosts Sorafenib’s Antitumor Effects

Blood and Fluid Signatures Predict IVF Embryo Success

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.