• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Bottle-brush design enhances cellular imaging

Bioengineer by Bioengineer
January 25, 2018
in Biology, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

The bottle brush, with its long stalk and dense spray of plastic bristles, is the unsung hero of kitchens everywhere, fitting through the narrow necks of water bottles and vases and into the hard-to-reach interiors of mugs and tumblers. With the gadget's unique design as inspiration, researchers now report in ACS Central Science the development of bottle-brush nanotags that can contain thousands of fluorophores, greatly enhancing the detection and analysis of cells.

Fluorescent probes help researchers see particular cells or proteins. For example, these probes are often used to distinguish healthy cells from cancerous ones. The most common approach is to make a sandwich of a "primary" antibody specific for a certain protein on a cell and a "secondary" antibody connected to fluorophores. But if a protein is expressed at a low level, it can be difficult to detect. In those cases, many fluorophores are attached to the secondary antibody to amplify the signal. However, there's a limit to that strategy — when the fluorophores are too close together, self-quenching can actually reduce the signal. To overcome this challenge, teams in the labs of Krzysztof Matyjaszewski, Bruce Armitage and Subha R. Das found inspiration in the many bristles of the bottle brush.

The groups created brush-shaped polymers with side chains that resemble bristles. From there, they attached DNA to the tips of these bristles and used complementary DNA to create a double-stranded structure. Special fluorescent molecules that bind only inside double-stranded DNA were added. The bottle-brush structure could then serve as a new type of secondary antibody that could bind to thousands of fluorophores, enhancing the signal by about 10 times compared to existing methods. The design permits the use of different dyes so that a wide range of colors of these fluorescent nanotags can be readily obtained. The authors note that, with additional tweaking, the brushes also could someday deliver cancer therapeutics.

###

The authors acknowledge funding from the National Science Foundation and the David Scaife Charitable Foundation.

The paper will be freely available on Nov. 4 at this link: http://pubs.acs.org/doi/full/10.1021/acscentsci.5b00259 .

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 158,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected]

Follow us: Twitter | Facebook

Share12Tweet7Share2ShareShareShare1

Related Posts

Michigan Startup Innovates Clothing Labels to Enhance Recycling and Brand Authentication

Michigan Startup Innovates Clothing Labels to Enhance Recycling and Brand Authentication

November 5, 2025
Measuring Customer Satisfaction for Raw Agricultural Goods

Measuring Customer Satisfaction for Raw Agricultural Goods

November 5, 2025

Tragopogon dubius Oil Targets Breast, Glioblastoma Cells

November 5, 2025

Synthetic α-Synuclein Fibrils Induce MSA in Mice

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Michigan Startup Innovates Clothing Labels to Enhance Recycling and Brand Authentication

Measuring Customer Satisfaction for Raw Agricultural Goods

Tragopogon dubius Oil Targets Breast, Glioblastoma Cells

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.