• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Boosting the sodium storage performance of Prussian blue analogues via effective etching

Bioengineer by Bioengineer
January 26, 2024
in Chemistry
Reading Time: 2 mins read
0
Boosting the sodium storage performance of Prussian blue analogues via effective etching
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

This study is led by Prof. Yuliang Cao and Prof. Yongjin Fang (College of Chemistry and Molecular Sciences, Wuhan University). The experiments were performed by using ammonia etching on highly crystalline Na2NiFe(CN)6 (denoted as NaNiHCF) to activate the sodium storage sites and accelerate the Na+ transport.

Boosting the sodium storage performance of Prussian blue analogues via effective etching

Credit: ©Science China Press

This study is led by Prof. Yuliang Cao and Prof. Yongjin Fang (College of Chemistry and Molecular Sciences, Wuhan University). The experiments were performed by using ammonia etching on highly crystalline Na2NiFe(CN)6 (denoted as NaNiHCF) to activate the sodium storage sites and accelerate the Na+ transport.

Fe(CN)6 vacancies and the water molecules in the lattice, which are concomitant during the synthesis, however, lead to poor electrochemical performance. Hence, optimizing the crystal structures of PBAs to boost their electrochemical performance is currently a hot spot in the research on PBAs. It is undisputed that the concomitant water molecules and Fe(CN)6 vacancies during the synthesis have a great influence on the electrochemical performance of PBAs. Besides, the morphology also affects the electrochemical properties due to changed surface area and Na+ diffusion routes, but few work pays attention to the morphology control. Etching is an effective method to tailor the morphology of PBAs. Nevertheless, the systematic study of the etching on the morphologies of PBAs and their structure-composition-performance properties have been rarely reported.

Herein, the ammonia etching on highly crystalline Na2NiFe(CN)6 (denoted as NaNiHCF) to activate the sodium storage sites and accelerate the Na+ transport. The ammonia etching leads to a progressive smoothing of the corners of the cubes, transforming them from standard cubes to dice shape particles. This augmented surface area facilitates improved contact between the electrolyte and electrode and reduces the diffusion paths for Na+ transmission. As a result, a great number of Na+ ions can be deintercalated from the PBAs skeleton, thereby improving the specific capacity. The sample etched for 3 h (NaNiHCF-3) exhibited the highest discharge specific capacity increasing from 76.8 mAh g-1 of NaNiHCF-0 precursor to 83.5 mAh g-1, and excellent cycling stability with a superior capacity retention of 94 % after 1000 cycles at 1 C. The ammonia etching proves to be an effective approach in enhancing the electrochemical performance of PBAs by regulating the morphology of NaNiHCF.

See the article:

Boosting the sodium storage performance of Prussian blue analogues via effective etching

https://link.springer.com/article/10.1007/s11426-023-1824-3



Journal

Science China Chemistry

DOI

10.1007/s11426-023-1824-3

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Alkaloid Chemistry: First Asymmetric Syntheses of Seven Quebracho Indole Alkaloids Achieved in Just 7-10 Steps Using “Antenna Ligands”

October 31, 2025
blank

Dual-Function Electrocatalysis: A Comprehensive Overview

October 31, 2025

Cologne Researchers Unveil New Element in the “Nuclear Periodic Table”

October 31, 2025

Molecular-Level Breakthrough in Electrochromism Unveiled

October 31, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Patient Insights: MyChart’s Role in IUD Placement

Reevaluating Xylotini: Codon Bias and Phylogenetic Insights

Delayed Cord Clamping Reduces Bronchopulmonary Dysplasia Risk

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.