• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Blood flow in the developing heart guides maturation of heart valves

Bioengineer.org by Bioengineer.org
January 20, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Lauren Goddard, PhD, Perelman School of Medicine, University of Pennsylvania

PHILADELPHIA –Congenital heart valve defects appear in 2 percent of all live births, making them the most common type of birth defect. While some of these defects have been linked to specific genetic mutations, the majority have no clearly definable genetic cause, suggesting that epigenetic factors – changes in gene expression versus an alteration in the genetic code — play an important role. Now researchers from the Perelman School of Medicine at the University of Pennsylvania have found that the force, or shear, of blood flow against the cells lining the early heart valve sends signals for heart "cushion" cells to become fully formed valves. Their findings are published in Developmental Cell.

Heart valves ensure that the beating heart drives blood flow in one direction. As the heart beats continuously over a lifetime, valve function must be flawless. Obstruction of forward flow or backward flow due to a defective valve can result in heart failure. Most serious valve defects are treated surgically, with the original valve able to be repaired and other times it must be replaced. However, in general valve replacements are held off in growing children for as long as possible to avoid outgrowing a valve replaced too early.

Embryonic heart valves develop as large cushions that, during development, reshape and thin to form mature valve leaflets. "The maturation of these big fluffy cushions into the perfectly fitting leaflets of a mature heart valve is an architectural marvel," said senior author Mark Kahn, MD, a professor of Cardiovascular Medicine. "We showed that shear-responsive KLF2-Wnt protein signaling is the basis of this remodeling."

Lauren Goddard, PhD, a postdoctoral researcher in the Kahn Lab, found that the protein KLF2 was expressed by the shear-sensing cells that line the primitive valve cushions. KLF2's expression was highest in the regions of the valve that experience the strongest shear forces. Using mouse models, she found that deletion of KLF2 in these cells resulted in large cushions that failed to mature properly. Profiling of the genes expressed by early cardiac cushion cells revealed that loss of KLF2 resulted in a significant decrease in the expression of the Wnt binding partner, WNT9B, a molecule important in the valve maturation communication path.

Loss of WNT9B in the mouse resulted in defective valve remodeling similar to what happens when KLF2 is deleted, suggesting it is a key downstream target of KLF2. Work done by co-author Julien Vermot from the Agence Nationale de la Recherche, an expert in how shear forces determine zebrafish development, demonstrated that expression of the gene for WNT9B is restricted to the cells that govern developing heart valves and is dependent on the shear force of early blood flow. These findings were instrumental in linking shear forces to KLF2-WNT9B signaling during valve remodeling.

This work is the first to demonstrate how blood flow shapes developing heart valves into mature valve leaflets. These studies, say the researchers, predict that even a minor breakdown in the series of precisely orchestrated cell-cell communications required to accurately pass on signals from blood flow may result in subtly defective valves. This idea supports an epigenetic explanation for common congenital valve defects.

###

The research was supported by the National Institutes of Health (R01HL094326, T32HL007954, R0111770, R01116997), the Agence Nationale de la Recherche, and the European Research Council.

Media Contact

Karen Kreeger
[email protected]
215-459-0544
@PennMedNews

http://www.uphs.upenn.edu/news/

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Peak Rush Hour and Lack of Dedicated Infrastructure Contribute to Increase in Cycling Near Misses in London

October 28, 2025

Study Finds Connection Between Outdoor Air Pollution and Increased Breast Cancer Risk

October 28, 2025

Thiophene-Doped Fully Conjugated Covalent Organic Frameworks Boost Photocatalytic Hydrogen Peroxide Production Efficiency

October 28, 2025

Exploring Taar Expression in Mandarin Fish Response

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1286 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Peak Rush Hour and Lack of Dedicated Infrastructure Contribute to Increase in Cycling Near Misses in London

Study Finds Connection Between Outdoor Air Pollution and Increased Breast Cancer Risk

Thiophene-Doped Fully Conjugated Covalent Organic Frameworks Boost Photocatalytic Hydrogen Peroxide Production Efficiency

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.