• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Blocking the back-door that cancer cells use to escape death by radiotherapy

Bioengineer by Bioengineer
July 27, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Melissa Fabrizio

(Edmonton) A natural healing mechanism of the body may be reducing the efficiency of radiotherapy in breast cancer patients, according to a new study.

Research led by scientists at the University of Alberta found that irradiation of breast fat (also known as adipose tissue) produces an inflammatory response that in normal circumstances promotes healing, but in cases of cancer, enables the cancer cells to survive. The team is now seeking a way to counteract the effect.

"Patients often undergo 25 daily doses of radiotherapy to the whole breast after surgical removal of the tumor to ensure that any remaining breast cancer cells are destroyed," said David Brindley, UAlberta professor of biochemistry and a member of the Cancer Research Institute of Northern Alberta. "During this treatment, the adipose tissue releases autotaxin, an enzyme that initiates a wound-healing response. This response ends up protecting the remaining cancer cells, allowing them to survive and avoid destruction."

As part of the study, Brindley and colleagues exposed rat and human adipose tissue to radiation doses similar to levels patients would experience during radiation therapy. They confirmed the procedure not only increased autotaxin production but also a general inflammatory wound healing response.

They are now working with an experimental autotaxin inhibitor with the hope that it can counteract the wound-healing response, which they expect would improve the effectiveness of radiotherapy. The compound is already being tested in clinical trials for a separate inflammatory condition.

"Cancer cells adopt a variety of strategies for avoiding the immune response in the body. If we can block the autotaxin response, we think the body would then be more able to use its own immune system to attack residual cancer cells and to eliminate them, particularly when they are already damaged," said Brindley.

"The advantage of attacking the autotaxin as a target is that it is independent of the characteristic and mutations in the tumour. We are not targeting the cancer cell itself, but its environment, which should be similar in different tumours. We're hopeful that our treatment will be applicable to all kinds of breast cancer and not just a particular subtype."

According to Brindley, the strategy also holds great promise for the treatment of other types of cancer such as thyroid cancer and glioblastoma. The team believes the same strategy can be used to improve the efficacy of chemotherapy. They hope to soon move their work into rodent animal models to provide further evidence that the approach works.

"This is not pie-in-the-sky thinking," said Brindley. "It has great promise."

###

The study was published in The FASEB Journal. This work was supported by grants from the Canadian Cancer Society Research Institute and the Canadian Breast Cancer Foundation.

Media Contact

Shelby Soke
[email protected]
403-988-4730
@ualberta_fomd

http://www.med.ualberta.ca

Related Journal Article

http://dx.doi.org/10.1096/fj.201700159R

Share16Tweet8Share2ShareShareShare2

Related Posts

blank

Estimating Rice Canopy LAI Non-Destructively Across Varieties

September 14, 2025

How SARS-CoV-2 Spike Protein Activates TLR4

September 14, 2025

Boosting Xanthan Gum Production with Essential Oil By-products

September 13, 2025

Groundwater Pesticide Contamination: Challenges and Solutions

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Estimating Rice Canopy LAI Non-Destructively Across Varieties

How SARS-CoV-2 Spike Protein Activates TLR4

Boosting Xanthan Gum Production with Essential Oil By-products

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.