• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, January 14, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Blister fluid could help diagnose burn severity

Bioengineer by Bioengineer
January 17, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Severe burns can leave physical and psychological scars, especially in children. When a burn patient enters the clinic, doctors use factors such as the depth and size of the burn, as well as the time required for skin healing–or re-epithelialization–to determine the best course of treatment. Now, researchers reporting in ACS’ Journal of Proteome Research have found another, possibly more accurate way to classify burn severity: analyzing proteins in blister fluid.

Diagnosing burn depth, which can continue to increase even hours after the injury initially occurs, takes up to two weeks and often depends on the doctor’s experience. Deep burns and those requiring longer than 21 days for healing typically require skin grafts. If doctors could accurately estimate burn depth and time for re-epithelialization at an earlier stage, they might be able to reduce scarring. This is especially important for pediatric burn patients because excessive scar tissue cannot expand with the growing child and could hamper joint movements and bone development. Tony Parker and colleagues wondered if they could use blister fluid taken from pediatric patients to accurately and quickly classify burn severity.

Mass spectrometry was used to analyze the proteomes of 56 samples of blister fluid from burns of different depths and re-epithelialization times. The researchers found that the deepest burns had a different pattern of protein abundance than shallower ones. For example, hemoglobin protein levels increased with burn depth, which could result from enhanced blood cell damage. Fluid from burns that took longer than 21 days to re-epithelialize had more collagen proteins, which are involved in scar formation, than faster-healing burns. The team found that taking into account the abundance of several proteins was more accurate in predicting burn depth and time to re-epithelialization than any protein alone. The analysis also revealed several burns that appear to have been misclassified by doctors, suggesting that the new approach could more accurately diagnose burns at an earlier stage.

###

The authors acknowledge funding from the Australian Government’s Cooperative Research Centres Program under the auspices of the Wound Management Innovation Cooperative Research Centre and from the National Health and Medical Research Council.

The abstract that accompanies this study is available here.

The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us on Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]
301-775-8455

Tags: BiochemistryCell BiologyChemistry/Physics/Materials SciencesCritical Care/Emergency MedicineDermatologyPainTrauma/Injury
Share12Tweet8Share2ShareShareShare2

Related Posts

Accelerated Donkey Breed Classification via SNP Insights

Accelerated Donkey Breed Classification via SNP Insights

January 14, 2026
Integrative Multi-Omics Links GWAS to Genes in Cattle

Integrative Multi-Omics Links GWAS to Genes in Cattle

January 14, 2026

Astaxanthin’s Role in Easing Exercise Muscle Damage

January 14, 2026

Impact of Sex on Mortality in Sjögren’s Disease

January 14, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    73 shares
    Share 29 Tweet 18
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Pre-Breakfast Hand Bathing Boosts Postoperative Recovery Comfort

Exploring Dorstenia barnimiana’s Antioxidant and Antibacterial Properties

Pre-Breakfast Bathing Boosts Post-Surgery Comfort in Japan

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.