• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Birds learn to avoid plants that host dangerous insects, researchers have found

Bioengineer by Bioengineer
October 7, 2021
in Biology
Reading Time: 3 mins read
0
Image 1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Young birds that eat insects with conspicuous warning colouration to advertise their toxicity to would-be predators quickly learn to avoid other prey that carry the same markings. Developing on this understanding, a University of Bristol team have shown for the very first time that birds don’t just learn the colours of dangerous prey, they can also learn the appearance of the plants such insects live on.

Image 1

Credit: Callum McLellan

Young birds that eat insects with conspicuous warning colouration to advertise their toxicity to would-be predators quickly learn to avoid other prey that carry the same markings. Developing on this understanding, a University of Bristol team have shown for the very first time that birds don’t just learn the colours of dangerous prey, they can also learn the appearance of the plants such insects live on.

To do this, the scientists exposed artificial cinnabar caterpillars, characterised by bright yellow and black stripes, and non-signalling fake caterpillar targets to wild avian predation by presenting them on ragwort and a non-toxic plant – bramble, which is not a natural host of the cinnabar. Both target types survived better on ragwort compared to bramble when experienced predators were abundant in the population.

They were also interested in whether birds use the bright yellow flowers of ragwort as a cue for avoidance. They tested this by removing spikes of flowers from the ragwort and pinning them onto bramble, then recording target survival on either plant. In this second experiment, only the non-signalling targets survived better on plants with ragwort flowers, compared to the same plant type without the flowers. The survival of the cinnabar-like target was equal across all plant treatments

Lead author Callum McLellan, a graduate student at the School of Biological Sciences, said “Cinnabar caterpillars have this really recognisable, stripey yellow and black appearance. They also only live and feed on ragwort, which itself has distinctive yellow flowers. We have shown that birds learn that the ragwort flowers are a cue for danger, so can avoid going anywhere near toxic prey. It’s more efficient to avoid the whole plant than make decisions about individual caterpillars.”

Co-author Prof Nick Scott-Samuel of the School of Psychological Science, said “Our findings suggest that insect herbivores that specialise on easily recognisable host plants gain enhanced protection from predation, independent of their warning signal alone.”

Prof Innes Cuthill, who conceived the study, added “Interestingly, any camouflaged caterpillars living on the same plant also benefit from birds’ learnt wariness of ragwort, despite being perfectly good to eat.

“Our results provide the opening to a brand-new discussion on how toxicity initially evolved in insect prey, and the conditions under which warning colouration is, or is not, favoured.”

 

Paper

‘Birds learn to avoid aposematic prey by using the appearance of host plants’ in Current Biology by Callum F. McLellan Nicholas E. Scott-Samuel and Innes C. Cuthill



Journal

Current Biology

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Birds learn to avoid aposematic prey by using the appearance of host plants

Article Publication Date

7-Oct-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

Researchers Forge Innovative Paths in Immunotherapy for Cancer Treatment

Researchers Forge Innovative Paths in Immunotherapy for Cancer Treatment

October 8, 2025
Calm Red Brocket Deer Can Learn “Come” and Other Commands, While the Flightiest Struggle

Calm Red Brocket Deer Can Learn “Come” and Other Commands, While the Flightiest Struggle

October 8, 2025

Captive Bears and Pandas Exhibit Distinct Gut Microbiomes, with Giant Pandas Showing Reduced Microbial Diversity Compared to Wild Populations

October 8, 2025

Building a Core Collection for Cacao Diversity

October 8, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1116 shares
    Share 446 Tweet 279
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    79 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sex and Smoking Shape Bladder Mutation Patterns

Revolutionizing Object Detection: Global Influence and Trends

Research Lab Unveils Breakthrough in mRNA Cancer Vaccine Technology

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.