• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Biosensor could help diagnose illnesses directly in serum

Bioengineer by Bioengineer
August 30, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In this age of fast fashion and fast food, people want things immediately. The same holds true when they get sick and want to know what's wrong. But performing rapid, accurate diagnostics on a serum sample without complex and time-consuming manipulations is a tall order. Now, a team reports in ACS Sensors that they have developed a biosensor that overcomes these issues.

Field-effect transistor (FET)-based biosensors are ideal for point-of-care diagnostics because they are inexpensive, portable, sensitive and selective. They also provide results quickly and can be mass produced to meet market demand. These sensors detect the change in an electric field that results from a target compound, such as a protein or DNA, binding to it. But serum has a high ionic strength, or a high concentration of charged ions, that can mask the targets. Previous research has reported use of pretreatment steps, complex devices, and receptors with different lengths and orientations on the sensor surface, but with limited success. Alexey Tarasov and colleagues wanted to develop a new approach that would make it easier for FETs to be made as point-of-care diagnostic devices for serum analyses.

The researchers developed a FET sensor that included antibody fragments and polyethylene glycol molecules on a gold surface, which they linked to a commercially available transducer. In this configuration, different sensor chips can be swapped out for use with the same transducer. As a proof-of-principle, they tested the sensor with human thyroid-stimulating hormone. The team found that they could detect the hormone at sub-picomolar concentrations, well below the detection limit previously reported with FETs, when testing it at elevated temperatures. They say that the device could be modified to diagnose many conditions and illnesses, and is inexpensive and easy to use.

###

The authors acknowledge funding from the Roche Diagnostics GmbH.

The paper's abstract will be available on Aug. 30 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acssensors.7b00187

The American Chemical Society is a not-for-profit organization chartered by the U.S. Congress. ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us: Twitter | Facebook

Media Contact

Katie Cottingham
[email protected]
301-775-8455
@ACSpressroom

http://www.acs.org

Share14Tweet7Share2ShareShareShare1

Related Posts

Dr. Carl Nathan Honored with David and Beatrix Hamburg Award

Dr. Carl Nathan Honored with David and Beatrix Hamburg Award

September 17, 2025
New Study Explores the Link Between Lipid Metabolism and Parkinson’s Disease

New Study Explores the Link Between Lipid Metabolism and Parkinson’s Disease

September 17, 2025

Magnetic Fields Enhance Monascus Pigment Production and Suppress Citrinin by Modulating Iron Metabolism

September 17, 2025

Single-Cell Rice Atlas Uncovers Cis-Regulatory Evolution

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Cancer Treatment: The Role of Nanomaterials and the Tumor Microenvironment

New Insights into Immunotherapy Failure Offer New Hope for Cancer Patients

Parents’ Perspectives on Neonatal Transfer Process

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.