• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Biologists share $1.83 million to explore why plant genomes duplicate

Bioengineer by Bioengineer
April 24, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

How genome doubling influences key crop plants

IMAGE

Credit: Joel Sharbrough/Colorado State University

When humans are born, we inherit one set of genes from our mother, and one from our father – a state biologists call “diploidy,” or housing exactly two sets of chromosomes in the cell nucleus.

Our distant evolutionary neighbors, plants, are often “polyploids;” the nuclei of their cells contain three or more sets of chromosomes as a consequence of genome duplication. While half of a plant’s nuclear genome comes from the egg and half from the sperm, genetic content found within other structures in the cell almost always comes from the egg, resulting in multiple copies of genes

This complex, separate inheritance scheme has worked well for plants and some animals, but not in humans – polyploidy always results in embryonic death. Biologists at Colorado State University are taking a deep dive into why polyploidy is common in plants, and how it has contributed to their evolutionary success.

Joel Sharbrough, a postdoctoral fellow in the lab of Associate Professor of Biology Dan Sloan, is sharing a $1.83 million grant from the National Science Foundation’s Division of Integrative Organismal Systems to answer fundamental questions about how genome doubling influences the biology of a set of key crop plants. The grant was jointly awarded to Jonathan Wendel’s lab at Iowa State University.

Scientists know that all major crop plants have evolutionary histories of genome doubling (and many are current polyploids). Wheat, for example, has six sets of chromosomes, as do kiwifruit.

But why?

The aspect of polyploidy that most intrigues Sharbrough is how the doubled nuclear genome interacts with other gene-containing parts of the cell, like mitochondria and chloroplasts. With the NSF grant, Sharbrough will co-lead a study investigating how, for example, energy produced by chloroplasts and mitochondria is altered – for better or worse – following genome-doubling events in the plant’s evolutionary history.

The researchers will conduct experiments on several plants – wheat, cotton, quinoa, peanuts and a small, flowering plant called thale cress – to test their hypotheses. Their aim is to use a diverse set of model plant genomes to draw far-reaching conclusions about how certain parts of plant cells have adapted and responded to genome doubling in the nucleus.

“Separate inheritance of the genome is fascinating,” Sharbrough said. “All eukaryotes depend on successful inheritance of these separate genomes inside cells, to function together and make energy for the organism. It’s a fundamental tenet of life that we don’t completely understand.”

The grant will fund research at CSU and Iowa State over the next three years.

###

Media Contact
Anne Manning
[email protected]

Original Source

https://natsci.source.colostate.edu/biologists-share-1-83-million-to-explore-why-plant-genomes-duplicate/

Tags: BiologyDevelopmental/Reproductive BiologyEvolutionPlant SciencesPopulation Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Dietary Shifts Fueled Physical Evolution in Early Humans

Dietary Shifts Fueled Physical Evolution in Early Humans

July 31, 2025
blank

Precision-Fermented Chicken Protein from Brewed Tested in Pet Food Trials

July 31, 2025

Leopard Seals Sing: Under-Ice Sounds Flow Like Nursery Rhymes

July 31, 2025

New Book Investigates How Antibiotics Affect Women’s Reproductive Health

July 31, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

vPro-MS Enables Untargeted Virus Detection in Patients

Safeguarding Your Heart: Essential Insights for Heart Health

Decoding the Mechanisms Behind Chemotherapy Resistance in Bladder Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.