• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Biologists share $1.83 million to explore why plant genomes duplicate

Bioengineer by Bioengineer
April 24, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

How genome doubling influences key crop plants

IMAGE

Credit: Joel Sharbrough/Colorado State University

When humans are born, we inherit one set of genes from our mother, and one from our father – a state biologists call “diploidy,” or housing exactly two sets of chromosomes in the cell nucleus.

Our distant evolutionary neighbors, plants, are often “polyploids;” the nuclei of their cells contain three or more sets of chromosomes as a consequence of genome duplication. While half of a plant’s nuclear genome comes from the egg and half from the sperm, genetic content found within other structures in the cell almost always comes from the egg, resulting in multiple copies of genes

This complex, separate inheritance scheme has worked well for plants and some animals, but not in humans – polyploidy always results in embryonic death. Biologists at Colorado State University are taking a deep dive into why polyploidy is common in plants, and how it has contributed to their evolutionary success.

Joel Sharbrough, a postdoctoral fellow in the lab of Associate Professor of Biology Dan Sloan, is sharing a $1.83 million grant from the National Science Foundation’s Division of Integrative Organismal Systems to answer fundamental questions about how genome doubling influences the biology of a set of key crop plants. The grant was jointly awarded to Jonathan Wendel’s lab at Iowa State University.

Scientists know that all major crop plants have evolutionary histories of genome doubling (and many are current polyploids). Wheat, for example, has six sets of chromosomes, as do kiwifruit.

But why?

The aspect of polyploidy that most intrigues Sharbrough is how the doubled nuclear genome interacts with other gene-containing parts of the cell, like mitochondria and chloroplasts. With the NSF grant, Sharbrough will co-lead a study investigating how, for example, energy produced by chloroplasts and mitochondria is altered – for better or worse – following genome-doubling events in the plant’s evolutionary history.

The researchers will conduct experiments on several plants – wheat, cotton, quinoa, peanuts and a small, flowering plant called thale cress – to test their hypotheses. Their aim is to use a diverse set of model plant genomes to draw far-reaching conclusions about how certain parts of plant cells have adapted and responded to genome doubling in the nucleus.

“Separate inheritance of the genome is fascinating,” Sharbrough said. “All eukaryotes depend on successful inheritance of these separate genomes inside cells, to function together and make energy for the organism. It’s a fundamental tenet of life that we don’t completely understand.”

The grant will fund research at CSU and Iowa State over the next three years.

###

Media Contact
Anne Manning
[email protected]

Original Source

https://natsci.source.colostate.edu/biologists-share-1-83-million-to-explore-why-plant-genomes-duplicate/

Tags: BiologyDevelopmental/Reproductive BiologyEvolutionPlant SciencesPopulation Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

“Molecular Bodyguard” Enables Infections to Persist

October 9, 2025
blank

Comparative Genomics of UK Mycoplasma pneumoniae (2016-2024)

October 9, 2025

Gymnocypris Przewalskii Juveniles Adapt to Saline-Alkaline Stress

October 9, 2025

New Global Study Reveals How Introduced Animals Alter Island Plant Dispersal

October 8, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1149 shares
    Share 459 Tweet 287
  • New Study Reveals the Science Behind Exercise and Weight Loss

    101 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    80 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Optimizing Yarrow Waste Fermentation for Enhanced Benefits

Optimizing Fe–Ni Alloys for Enhanced Anode Performance

“Molecular Bodyguard” Enables Infections to Persist

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.