• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Bioengineered human cardiac models spur disruptive innovation in disease research

Bioengineer by Bioengineer
October 24, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

TORONTO (23 Oct. 2018) — Thrombosis-on-a-chip, vasculature-on-a-chip and engineered models of human cardiac fibrosis are just a few of the new technologies revolutionizing research into human cardiovascular disease–a condition responsible for 17 million deaths per annum globally. A new study entitled Cardiovascular Disease Models: A Game Changing Paradigm in Drug Discovery and Screening, published this week in the journal Biomaterials by bioengineering scientists from the University of Toronto, proposes a new paradigm for research into cardiovascular diseases. The new paradigm is rooted in a human-specific understanding of disease mechanisms, coupled with application of novel microphysiological and computational tools based on human biology to create more predictive laboratory models of the human disease.

Lead author, Dr. Houman Savoji, CIHR & FRQNT postdoctoral fellow in Prof. Milica Radisic's Laboratory, explained that, "In vitro and in silico disease models are frequently used to complement or confirm data acquired from animal models. However it is apparent that the application of these two fast-growing and emerging platforms, given their reduced costs, more ethical and more accurate, human-relevant outcomes, are becoming promising substitutes for animal models. The development of multi-functional platforms that combine mechanistic knowledge about the pathophysiology and etiology of cardiovascular diseases with ever-expanding engineering technologies (i.e., micro/nanofabrication) and advances in stem cell biology, brings hope to the mandate of improving translation in drug discovery and concomitantly reducing the use of experimental animals in preclinical research."

The cardiovascular system is one of the most complex human systems to model, given its intimate functional interactions with the vasculature, nervous and renal systems. Traditionally, animals have been used for this purpose; however, animal models of cardiac disease may not show all the features of a specific condition, and even genetically modified animals cannot recapitulate human cardiovascular disease. There are difficulties in translating information from animal models to the human situation — even for healthy heart function — due to the enormous differences in heart size, architecture, rate of beating, oxygen consumption, contractility, protein expression and stem cell populations between mice and humans. Dr. Savoji describes how "not all experimental models (i.e., mice and rats) are acceptable for [studying] atherosclerosis due to intrinsic genetic differences, and their [the animals'] higher resistance to…high cholesterol diet."

The exciting advances detailed in Dr. Savoji's paper offer suggestions for improving and further developing current models of the heart and cardiovascular system. Electrical stimulation can be applied to stem cell models to promote cellular maturity, creating models that more closely resemble an adult heart; multi-dimensional scaffolds with in-built vascular networks start to mirror the complexity of the cardiovascular system; mechanistic and data-driven modelling (using quantitative systems pharmacology or QSP) inform dose selection, drug-drug interaction and ultimately, identification of the best therapeutic strategy. Coupling these approaches with the use of patient-derived stem cells to create bespoke disease models will create more reliable, predictive models for disease onset, progression and drug response.

The need for such a new approach is evidenced by the high failure rates of drugs in general, and by the severity of adverse drug reactions in late-stage clinical development as a result of cardiovascular toxicity. For example, Vioxx (Rofecoxib), originally designed to treat pain related to osteoarthritis and approved by the U.S. Food and Drug Administration in 1999, was linked to over 27,000 cardiovascular-related deaths, and doubled the risk of heart attack and stroke. Vioxx was withdrawn from the market in 2004. Recent developments in computational and mechanistic cardiac modelling have opened new avenues to improve predictions of drug-induced cardiotoxicity before these drugs are released into the clinic.

###

The review by Savoji et al. was supported with funding from Humane Society International and the Humane Society of the United States on behalf of the BioMed21 Collaboration.

Media Contact

Lindsay Marshall
[email protected]

Home

http://dx.doi.org/10.1016/j.biomaterials.2018.09.036

Share12Tweet8Share2ShareShareShare2

Related Posts

Revolutionizing Disease Treatment: Mitochondrial Transporters Targeted

October 17, 2025

Boosting Older Adults’ Well-Being During COVID-19

October 17, 2025

Zambian Views Challenge Simplistic Global Health Decolonization

October 17, 2025

O-GlcNAc Transferase Drives Lumbar Joint Degeneration

October 17, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1254 shares
    Share 501 Tweet 313
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Disease Treatment: Mitochondrial Transporters Targeted

Boosting Older Adults’ Well-Being During COVID-19

Zambian Views Challenge Simplistic Global Health Decolonization

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.