• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Biochar could replace unsustainable peat moss in greenhouse industry

Bioengineer by Bioengineer
February 8, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Andrew Margenot

URBANA, Ill. – Plant lovers are familiar with peat moss as the major component of potting mix, but harvest of the material is becoming unsustainable. Not only is peat being removed faster than it can re-form, its use in potting mix contributes to the release of carbon dioxide into the atmosphere.

"Peat bogs naturally store carbon. When peat moss is harvested, there's a transfer of a global carbon sink into a net source. That's because within a couple growing seasons, most of the peat moss from the potting mix is either mineralized by microbes or thrown out and decomposed. Either way, carbon dioxide is released," says Andrew Margenot, assistant professor in the Department of Crop Sciences.

In a recent study, Margenot and colleagues from the University of California, Davis investigated a material called biochar as an alternative to peat moss in potting mix. Similar to charcoal, biochar is produced through a process called pyrolysis, or heating to high temperatures in the absence of oxygen. And like charcoal, it can be derived from virtually any organic substance.

"In our study, we used one made from softwoods from selective logging. But biochars can be made from corn stover, switchgrass, and lots of other organic waste products," Margenot says. "Biochar could even be made from a greenhouse operation's own waste, if there are trimmings from plants or old peat moss." Margenot emphasizes that 'biochar' refers to a very broad class of material that can vary greatly in its properties depending on the pyrolysis temperature and the feedstock used.

When organic material decomposes naturally, the process releases carbon dioxide. But biochar decomposes very slowly – potentially on the order of centuries – so when organic material is turned into biochar, the carbon is essentially sequestered and can't escape back into the atmosphere.

But how well does it work in potting mix? To find out, Margenot and his team grew marigolds from seed to flower in a number of experimental potting mixtures that replaced peat moss with an increasing proportion of commercially available softwood biochar.

In the biochar mixtures, pH soared. "The ones with lots of biochar had a pH up to 10.9, which is ridiculous for trying to grow things," Margenot says. But this wasn't unexpected for the type of biochar the researchers used.

Marigolds grew and flowered just fine, even when biochar replaced all of the peat moss in the potting mix. However, for plants growing with high concentrations of biochar, the early stages were a struggle.

"You could see that the plants took a hit in the early stages of growth – the first two to three weeks. They were shorter and had less chlorophyll, indicative of a nitrogen deficiency, which you'd expect at such a high pH. But these plants caught up by the end. By flowering stage, there was no negative effect of biochar versus peat moss," Margenot says.

Not only did the plants suffer no long-lasting negative effects of the biochar, the pH in those pots neutralized by the end of the study. Margenot thinks this could have been due to a natural process of ion exchange between plant roots and potting mix, naturally occurring carbonates in the irrigation water, or the use of industry-standard fertigation – irrigation with low levels of dissolved nutrient ions such as nitrate and phosphate – in the experiment.

Although he only tested one type of biochar in one type of plant, Margenot is optimistic about the promise of biochar in nursery applications. "Because we used a softwood biochar known for its high pH, we really tested the worst case scenario. If it could work in this case, it could probably work with others."

###

The article, "Substitution of peat moss with softwood biochar for soil-free marigold growth," is published in Industrial Crops and Products. Margenot's co-authors, all from UC Davis, include Deirdre Griffin, Barbara Alves, Devin Rippner, Chongyang Li, and Sanjai Parikh.

Media Contact

Lauren Quinn
[email protected]
217-300-2435
@ACESIllinois

http://aces.illinois.edu/

Related Journal Article

http://dx.doi.org/10.1016/j.indcrop.2017.10.053

Share12Tweet8Share2ShareShareShare2

Related Posts

New Shrimp Species Discovered Off Sugashima Island, Japan

New Shrimp Species Discovered Off Sugashima Island, Japan

September 30, 2025

Cross-Kingdom Trained Immunity in Plant Defense

September 30, 2025

Unraveling Genetic Traits in Danish Landrace Pigs

September 30, 2025

Bank Vole: A New Frontier in Biological Research

September 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    88 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    60 shares
    Share 24 Tweet 15
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Model Advances Imaging Detection of Extranodal Extension and Predicts Outcomes in HPV-Positive Oropharyngeal Cancer

Two-Metal Enzyme Cascade Builds Azetidine Pharmacophore

Johns Hopkins Researchers Discover Innovative Immune System Enhancement to Combat Cancer Cells

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.