• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Bioactive novel compounds from endangered tropical plant species

Bioengineer by Bioengineer
October 26, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Kanazawa University

Background

It is well known that natural products are valuable resources for drug discovery and development. In particular, plant-derived natural products have greatly contributed to the area of cancer chemotherapeutics. Many antitumor drugs currently in clinical use, such as paclitaxel, vinca alkaloids (vinblastine and vincristine), podophyllotoxin analogues (etoposide and teniposide), and topotecan (camptothecin analog) are based on natural plants. According to a report, 83% of new chemical entities identified as anticancer agents from 1981 to 2014 were derived from natural products.

In the late 1980s and 1990s, the Natural Products Branch (NPB) of the U.S. National Cancer Institute (NCI, Frederick, MD) supported the collection of ca. 80,000 plant samples from tropical areas in the Americas, Africa, and Southeast Asia. Extracts from ca. 3,000 species displayed significant antiproliferative activities at a concentration of 20 μg/mL and 70% of these active species originated from either rainforests or their adjacent areas. Despite the importance of rainforest plants for drug discovery, unfortunately these valuable regions are declining due to climate change, and industrial and economic development, resulting in an extinction crisis for many plant species.

The rainforest plant Alangium longiflorum Merr. (Cornaceae) is threatened with extinction and currently on the Red List of Threatened Species created by the International Union for Conservation of Nature and Natural Resources (IUCN). A crude organic extract from the leaves of A. longiflorum displayed broad cytotoxicity with more specific antiproliferative effects against the growth of leukemic cell lines in the NCI-60 human tumor cell line panel. A collaborative phytochemical and biological study on this extract as a resource of anticancer leads was conducted by a research group at Kanazawa University and the NPB of the NCI.

Results

A 50% CH3OH/CH2Cl2 extract of the leaves of A. longiflorum (NCI-N33539) was fractionated with EtOAc and water to provide EtOAc- and water-soluble fractions. The EtOAc-soluble fraction was separated by a combination of various chromatography techniques to afford three new compounds, 8-hydroxytubulosine (1), 2'-O-trans-sinapoylisoalangiside (2), and a lupane-type triterpenoid (3), as well as 14 known compounds including 8 alangisides, 9-demethyltubulosine, ankorine, ?-tocopherylquinone, loganic acid, methyl pheophorbide a, and pheophytin a. The structures of all isolated compounds were characterized on the basis of extensive 1D and 2D NMR, HRMS analyses, and comparison of the reported data in the case of known compounds.

Selected compounds were primarily evaluated for their antiproliferative activities against five human tumor cell lines including lung carcinoma (A549), triple-negative breast cancer (MDA-MB-231), estrogen receptor-positive and HER2-negative breast cancer (MCF-7), as well as HeLa (cervical carcinoma)-derived (KB) and its multidrug-resistant (MDR) subline (KB-VIN). A new alkaloid 1 and the related known compound 9-demethyltubulosine exhibited significant antiproliferative activities at submicromolar levels against all chemosensitive cell lines, while the MDR cell line KB-VIN was resistant against 1 and 9-demethyltubulosine. The result from NCI-60 panel screening also demonstrated that 1 showed broad spectrum antiproliferative activities at the submicromolar level against most tumor types derived from the breast, central nervous system, leukemia, melanoma, non-small cell lung, ovary, prostate, and renal cells except for the adriamycin-resistant ovarian tumor cell line showing the MDR phenotype (NCI/ADR-RES) and HCT-15, both of which express drug transporter(s).

Flow cytometric analysis implied that compound 1 showed no significant effects on cell cycle progression in MDA-MB-231 cells, even at 10-fold the IC50 concentration, while sub-G1 cells accumulated dramatically after 48 h of treatment. These results indicated that compound 1 induced apoptosis in a time- and dose-dependent manner.

Significance and future prospects

Plants have been the first source of medicines and serve as a major resource of modern drugs to date. Surprisingly, ca. 90% of higher plants have still not been subjected to phytochemical investigation. Rainforests can supply rich and diverse plants that are expected to be valuable resources for the discovery of bioactive novel natural products with unique phytochemical properties as drug candidates. We will continue to work to identify novel bioactive natural products from rainforest plants through our collaboration with the NCI.

###

Media Contact

Tomoya Sato
[email protected]
81-762-645-076

http://www.kanazawa-u.ac.jp/e/index.html

Related Journal Article

http://dx.doi.org/10.1021/acs.jnatprod.8b00411

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Risk Assessment of PAHs in Korean Sesame Oil

November 3, 2025
Sex Differences Unveiled in Hamster Hypertension Study

Sex Differences Unveiled in Hamster Hypertension Study

November 3, 2025

AI Misuse in Stem Cell Research: A Comparative Study

November 3, 2025

Modular High-Throughput Tools Boost Chlamydomonas Chloroplast Research

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

EHU Showcases Breakthrough Materials Capable of Absorbing 99.5% of Light for Solar Tower Applications

Revolutionizing Matter at the Nanoscale: The Future of Field-Based Printing

Transforming Healthcare: Trauma-Informed Change in South Texas

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.