• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Biggest ever supercomputer simulation to investigate Universe’s evolution

Bioengineer by Bioengineer
October 24, 2023
in Chemistry
Reading Time: 3 mins read
0
flamingo_background.jpg
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Astronomers have carried out the biggest ever computer simulations from the Big Bang to the present day to investigate how the Universe evolved.

flamingo_background.jpg

Credit: Image credit Josh Borrow, the FLAMINGO team and the Virgo Consortium.

Astronomers have carried out the biggest ever computer simulations from the Big Bang to the present day to investigate how the Universe evolved.

The FLAMINGO simulations calculate the evolution of all the components of the Universe – ordinary matter, like stars and planets, dark matter and dark energy – based on the laws of physics.

As the simulations progress, virtual galaxies and galaxy clusters emerge in precise detail.

The team behind FLAMINGO, from Durham University, UK, Leiden University, the Netherlands, and Liverpool John Moores University, UK, hope the simulations will allow researchers to compare the virtual Universe with observations of the real thing being captured by new high-powered telescopes, like the James Webb Space telescope.

This could help scientists understand if the standard model of cosmology – used to explain the evolution of the Universe – provides a good description of reality.

The first research papers from FLAMINGO have been published in the journal Monthly Notices of the Royal Astronomical Society.

Previous simulations, which have been compared to observations of the Universe, have focused on cold dark matter – believed to be a key component of the structure of the cosmos.

However, astronomers now say that the effect of ordinary matter, which makes up only sixteen per cent of all matter in the Universe, and neutrinos, tiny particles that rarely interact with normal matter, also need to be taken into account when trying to understand the Universe’s evolution.

FLAMINGO Principal Investigator Professor Joop Schaye, of Leiden University, said: “Although the dark matter dominates gravity, the contribution of ordinary matter can no longer be neglected since that contribution could be similar to the deviations between the models and the observations.”

The FLAMINGO simulations tracked the formation of the Universe’s structure in dark matter, ordinary matter and neutrinos, following the standard model of physics.

The team ran the simulations at a powerful supercomputer in Durham over the past two years using different resolutions and also altered other factors such as the strength of galactic winds and the mass of the neutrinos.

The first results showed that the inclusion of ordinary matter and neutrinos in the simulations is essential for making accurate predictions.

New telescopes, such as the international “Dark Energy Survey Instrument” (in which Durham is a partner)  and the European Space Agency’s Euclid space telescope, are collecting huge amounts of data about galaxies, quasars and stars, and these observations are posing questions about the theories behind current understanding of the evolution of the Universe.

Simulations like FLAMINGO will play a key role in interpreting this data by comparing theoretical predictions with observational data.

FLAMINGO research collaborator Professor Carlos Frenk, Ogden Professor of Fundamental Physics, in the Institute for Computational Cosmology, Durham University, said: “Cosmology is at a crossroads.

“We have amazing new data from powerful telescopes some of which do not, at first sight, conform to our theoretical expectations. Either the standard model of cosmology is flawed or there are subtle biases in the observational data.

“Our super precise simulations of the Universe should be able to tell us the answer.”

The simulations took more than 50 million processor hours on the Cosmology Machine (COSMA 8) supercomputer, hosted by the Institute for Computational Cosmology, Durham University, on behalf of the UK’s DiRAC High-Performance Computing facility.

To make the FLAMINGO simulations possible, the researchers developed a new code, called SWIFT, which efficiently distributes the computational work over thousands of Central Processing Units (CPUs, sometimes as many as 65,000.

The large amount of (virtual) data created by the simulations provides opportunities to make new theoretical discoveries and to test new data analysis techniques, including machine learning.

FLAMINGO is a project of the Durham-based VIRGO consortium for cosmological supercomputer simulations. The acronym stands for Full-hydro Large-scale structure simulations with All-sky Mapping for the Interpretation of Next Generation Observations.

Funding for FLAMINGO came from the European Research Council, the UK’s Science and Technology Facilities Council, the Netherlands Organization for Scientific Research and the Swiss National Science Foundation.

ENDS



Journal

Monthly Notices of the Royal Astronomical Society

DOI

10.1093/mnras/stad2540/7291940

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

Article Title

FLAMINGO: Calibrating large cosmological hydrodynamical simulations with machine learning

Article Publication Date

24-Oct-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Dynamic Acoustic Mimicry through Parity Metamaterials

Dynamic Acoustic Mimicry through Parity Metamaterials

October 27, 2025
blank

Revamped Design for the Electron Superhighway

October 27, 2025

Tritium Leak Sheds Light on Radioactive Cesium Pathway from Fukushima Daiichi to the Ocean

October 27, 2025

How Unchanging Is the Fine Structure Constant?

October 27, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1286 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Pediatric Rhabdomyolysis: Insights on Causes and Treatments

Neonatal Car Seat Test: Heart and Oxygen Study

Double-Dose Furmonertinib: Efficacy in EGFR Ex20ins NSCLC

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.