• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Better understanding membranes

Bioengineer by Bioengineer
May 26, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Experts from the University of Goettingen and the Hereon present new research strategies

IMAGE

Credit: Graphic: Authors of the paper

Whether in desalination, water purification or CO2 separation, membranes play a central role in technology. The Helmholtz-Zentrum Hereon has been working for several years on a new variant: it consists of special polymers that form pores of the same size on the nanometer scale. The materials to be separated, such as certain proteins, can literally slip through these pores. Because these separation layers are very thin and thus very fragile, they are bound to a spongey structure with much coarser pores, providing the structure with the necessary mechanical stability.

“A special aspect is that these structures form in an act of self-organization,” says Prof. Volker Abetz, director of the Hereon Institute of Membrane Research and professor of physical chemistry at the University of Hamburg. “In contrast to comparable membranes, which are partially manufactured through a complex process using particle accelerators, this promises relatively inexpensive production.” Because the polymer membranes combine high throughput with strong separation selectivity, they could be interesting in the future for biotechnology and pharmaceutical production, but also in wastewater treatment, such as e.g., for filtering out unwanted dyes.

Advances through computer simulations

Experts have made considerable progress in the development of these new membranes in recent years. However, to tailor them for specific applications, a comprehensive theoretical understanding is still lacking. “So far, there has been a lot of trial and error as well as gut feeling involved,” says Abetz. “Now it should be about fundamentally understanding these systems as much as possible.” For this reason, Marcus Müller, professor of theoretical physics at the University of Göttingen and Volker Abetz have published a review article in the scientific journal Chemical Reviews. The work summarizes the current state of knowledge in the field of polymer membranes and identifies the most promising research approaches that can close existing gaps in knowledge.

Computer simulations play an important role here: they can be used to digitally model in detail what happens during the manufacturing process. “The problem is that these processes are exceedingly complex, and we are dealing with completely different length and time scales,” explains Müller. “And we have not yet been in the position to cover all of these scales with a single description.” There are, however, computer models that can simulate individual aspects. While some of these models describe the behavior of individual polymer molecules, others reproduce the membrane on a much coarser grid. These different approaches have so far only been rather weakly linked, and describing the time sequence of the various processes also poses a challenge. For a deeper understanding, it would be beneficial if the models were better interlinked than they are now.

Polymer membranes from the drawing board

“Polymer membrane production can be compared to making a soufflé,” says Müller. “Both are about stabilizing the tiny pores that matter, before the entire thing collapses again.” One of the aspects that is unclear is how and if the simultaneous formation of the separation layer and carrier layer influence each other and how this can be controlled. Another question concerns how the pores can be arranged and aligned in such a way that they allow the highest possible flow rate through the membrane–a decisive criterion for the membrane’s profitability. “Fortunately, both computers and models are getting better and better, and that should facilitate considerable progress”, Müller adds. “We can access the JUWELS supercomputer in Jülich, which is one of the fastest in the world.” Machine learning algorithms could also possibly help in the future; there could be undiscovered potential here.

Not only theory is required, however. There is also work to be done in the experiments. “One big unknown, for example, is the humidity,” explains Abetz. “We know that it can decisively influence the formation of a polymer membrane. But in order to better understand this influence, we need systematic tests.” If hurdles like these can be overcome, it will bring the long-term research aim a little closer: “Our dream is to design and optimize a polymer membrane for a specific application as a “digital twin” on the computer first so that it can later be produced in a targeted manner in the laboratory,” says Abetz. “And perhaps we could even discover entirely new structures on the computer, ones that we never would have encountered in the experiment.

###

Media Contact
Christoph Woehrle
[email protected]

Original Source

https://www.hereon.de/innovation_transfer/communication_media/news/101423/index.php.en

Related Journal Article

http://dx.doi.org/10.1021/acs.chemrev.1c00029

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesComputer TheoryMolecular PhysicsPolymer ChemistryTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Ni-Electrocatalysis Builds 1,1-Diaryl Cyclobutanes, Azetidines, Oxetanes

November 11, 2025
Hidden Catalysis: Everyday Lab Gear Turns into Powerful Reagents Through Abrasion

Hidden Catalysis: Everyday Lab Gear Turns into Powerful Reagents Through Abrasion

November 11, 2025

Innovative Self-Heating Catalyst Breaks Down Antibiotic Pollutants in Water and Soil

November 11, 2025

Revolutionizing Water-Based Light Emission: 1,000x Boost in White-Light Output Achieved with Non-Harmonic Two-Color Femtosecond Lasers

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

MechRAG: Multimodal AI Revolutionizes Mechanical Engineering

Introducing CASIA-EXO: A Groundbreaking Exoskeleton Designed to Enhance Motor Learning in Post-Stroke Rehabilitation

Study Reveals VR Headsets Could Reduce Dry Eye Risk: World’s First Time-Course Observation During VR Use

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.