• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Best of both worlds: New elastic and durable crosslinked anion exchange membranes

Bioengineer by Bioengineer
January 4, 2023
in Chemistry
Reading Time: 4 mins read
0
Durable Crosslinked Anion Exchange Membranes for Efficient Fuel Cells
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Fossil fuels are major contributors to pollution, leading to global warming and erratic climatic fluctuations. Hydrogen fuel cells are a promising eco-friendly alternative to fossil fuels, since they use hydrogen as a source to produce electricity, releasing only water and heat in the process.

Durable Crosslinked Anion Exchange Membranes for Efficient Fuel Cells

Credit: Ryan Somma from FLICKR
Image link: https://search-production.openverse.engineering/image/edb01022-4dea-4ad9-98a9-886fa77fe9a3

Fossil fuels are major contributors to pollution, leading to global warming and erratic climatic fluctuations. Hydrogen fuel cells are a promising eco-friendly alternative to fossil fuels, since they use hydrogen as a source to produce electricity, releasing only water and heat in the process.

Several types of hydrogen fuel cells exist, among which anion exchange membrane alkaline fuel cells (AEMFCs) are quite popular. These employ anion exchange membranes (AEMs), which require excellent chemical stability to perform efficiently under alkaline conditions. Poly(aryl piperidinium) (PAP) is a potential candidate for the preparation of these membranes. However, early prototypes created purely from this polymer have sub-par mechanical strength and phase separation, necessitating further modifications.

To this end, Professor Tae-Hyun Kim and colleagues at the Incheon National University, South Korea, have developed a new AEM by crosslinking poly(bibenzyl N-methyl piperidine) (PBB)—a rigid PAP unit—with poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS)—an elastic component. They also evaluated the new AEM’s (x-PBB-SEBS) physical, chemical, and electrical properties under laboratory and real time fuel cell conditions.

Discussing the motivation behind the study, which was published online on October 13, 2022 in volume 664 of Journal of Membrane Science, Prof. Kim remarks, “This research was conducted primarily to improve the performance and durability of anion exchange membrane alkaline fuel cells through the development of electrolyte membranes, the key components of fuel cells.”

The research team developed three types of membranes with varying degrees of crosslinking (30%, 40%, and 50%) by modifying the ratio of PBB to SEBS. All three exhibited high mechanical and tensile strength, excellent phase separation, and ionic conductivity.

Furthermore, the membrane with the 40% crosslinking (40x-PBB-SEBS) proved to be the most optimal with respect to its balance between toughness and elasticity.

It also demonstrated a very high ionic conductivity of 72.28–146.25 mS cm–1, and outstanding alkaline and oxidative stability, due to its increased crosslinking.

Moreover, as AEMs function as electrolytes, they require high water retention for a satisfactory performance. On testing the membranes in an AEM fuel cell, the team found that 40x-PBB-SEBS recorded the highest relative humidity, normalized conductivity, and an impressive peak power density. The membrane even surpassed the performance of a commercially used membrane by a huge margin, when tested in real time using AEM water electrolysis!

These findings have laid a strong foundation for the development of additional high-performance materials for AEMs with superior performances. Sharing his vision for the future, Prof. Kim muses, “The capabilities of the bibenzyl-SEBS crosslinked membrane exhibits can enable their introduction into hydrogen mobility and home power generation systems as well as in eco-friendly hydrogen production facilities. In this manner, our research can contribute to eco-friendly energy production and carbon neutrality.”

 

***

 

Reference

DOI: https://doi.org/10.1016/j.memsci.2022.121071

Authors: Kyungwhan Mina, b, Yerim Leea, b, Yeongeun Choic, Oh Joong Kwonc, Tae-Hyun Kima,b

Affiliations:

aOrganic Material Synthesis Laboratory, Department of Chemisty, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, South Korea

bResearch Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, South Korea

cDepartment of Energy and Chemical Engineering and Innovation Centre for Chemical Engineering, Incheon National University, Incheon, Republic of Korea

 

About Incheon National University

Incheon National University (INU) is a comprehensive, student-focused university. It was founded in 1979 and given university status in 1988. One of the largest universities in South Korea, it houses nearly 14,000 students and 500 faculty members. In 2010, INU merged with Incheon City College to expand capacity and open more curricula. With its commitment to academic excellence and an unrelenting devotion to innovative research, INU offers its students real-world internship experiences. INU not only focuses on studying and learning but also strives to provide a supportive environment for students to follow their passion, grow, and, as their slogan says, be INspired.

Website: http://www.inu.ac.kr/mbshome/mbs/inuengl/index.html

 

About Professor Tae-Hyun Kim from Incheon National University

Dr. Tae-Hyun Kim is a Chemistry Professor at Incheon National University (INU), South Korea. He is also the director of the Research Institute of Basic Sciences at INU. Dr. Kim received a Ph.D. in Chemistry from Cambridge University, United Kingdom, and conducted his post-doctoral research at Massachusetts Institute of Technology, USA. Before joining INU, he was a senior research associate at Eastman Chemical Co. His research interests are primarily focused on the development of organic materials for multiple applications, including fuel cells, lithium batteries, water electrolysis, and gas separation. He has authored over 150 SCI journal articles and owns over 80 patents.



Journal

Journal of Membrane Science

DOI

10.1016/j.memsci.2022.121071

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

High-performance anion exchange membranes achieved by crosslinking two aryl ether-free polymers: poly(bibenzyl N-methyl piperidine) and SEBS

Article Publication Date

15-Dec-2022

COI Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Underwater Thermal Vents Could Be the Cradle of Life’s Earliest Molecular Precursors

October 22, 2025
blank

New Bacterium Harnesses Spent Battery Waste, Paving the Way for Self-Sufficient Battery Recycling

October 22, 2025

Light Particles Thrive in Groups, Study Reveals

October 22, 2025

Innovative Observation Technique Advances Prospects for Lithium Metal Batteries

October 22, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1275 shares
    Share 509 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    306 shares
    Share 122 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    145 shares
    Share 58 Tweet 36
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    131 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Deterministic Soliton Microcombs in Cu-Free PICs

New Genomic Test May Help Melanoma Patients Avoid Lymph Node Biopsy Surgery

Study finds gum disease and cavities may elevate risk of stroke

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.