• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Bespoke catalysts for power-to-X

Bioengineer by Bioengineer
July 8, 2020
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Using a synchrotron, scientists of KIT watch a power-to-X catalyst at work

IMAGE

Credit: Photo: Tiziana Carambia

Suitable catalysts are of great importance for efficient power-to-X applications – but the molecular processes occurring during their use have not yet been fully understood. Using X-rays from a synchrotron particle accelerator, scientists of the Karlsruhe Institute of Technology (KIT) have now been able to observe for the first time a catalyst during the Fischer-Tropsch reaction that facilitates the production of synthetic fuels under industrial conditions. It is intended to use the test results for the development of bespoke power-to-X catalysts. The team has published the results in the scientific journal Reaction & Chemical Engineering. (DOI: 10.1039/c9re00493a)

On the way to a CO2-neutral society, power-to-X processes (P2X), i.e. processes that convert renewable energy into chemical energy sources, support the interlocking of different sectors. For example, synthetic fuels can be produced from wind or solar power, enabling climate-friendly mobility and goods transport without additional greenhouse gas emissions. The Fischer-Tropsch synthesis (FTS), which is necessary for this purpose among other things, yielding long-chain hydrocarbons for the production of petrol or diesel from carbon monoxide and hydrogen, is an established process in the chemical industry. However, even though more than one hundred years have passed since the discovery of this technology, the processes involved are still not fully understood scientifically: “This applies in particular to the structural changes in the catalysts required for the process under industrial conditions,” says Professor Jan-Dierk Grunwaldt from the Institute for Chemical Technology and Polymer Chemistry (ITCP) of KIT. “During the reaction, undesirable by-products can be formed or disruptive structural changes in the catalyst can occur. So far, it has not been explained sufficiently how this happens exactly during the reaction and what the effects on the overall process are.”

In a transdisciplinary project, in cooperation with P2X experts from the Institute for Micro Process Engineering (IMVT) and the Institute of Catalysis Research and Technology (IKFT) of KIT, the team has now achieved a breakthrough in understanding the FTS at the atomic level. “For the analysis, we use methods of synchrotron research, i.e. X-ray absorption spectroscopy and X-ray diffraction,” explains Marc-André Serrer (IKFT), one of the authors of the study. “This was the first time that we were able to watch, so to speak, an FTS catalyst at work at the atomic level under real process conditions.” While catalytic reactions had already been studied beforehand with a synchrotron, a special particle accelerator for generating particularly intense X-ray radiation, reactions that take place over a long period of time and at high temperatures and pressures, as in real-time operation at a P2X facility, have so far presented an obstacle. For the experiment at KIT, a novel high-pressure infrastructure has now been added to the CAT-ACT measuring line (CATalysis and ACTinide measuring line) designated for catalyst studies at the KIT synchrotron. With this infrastructure – which was built as part of the German Federal government’s Kopernikus projects for the energy turnaround – it was possible to determine the function of a commercial cobalt-nickel catalyst operando at 250 °C and 30 bar for more than 300 hours during the FTS. This was also the first time that a sufficient quantity of hydrocarbons could be produced in such an experiment that could be analyzed afterwards.

Catalyst development at the computer

The experiment allowed the scientists to identify hydrocarbon deposits that hinder the diffusion of the reactive gases towards the active catalyst particles. “In the next step, these insights can be used to protect the catalyst specifically against these deactivation mechanisms,” says Grunwaldt. “This is done, for example, by modifying the catalyst with promoters, i.e. substances that improve the properties of the catalyst.” In the future, the novel atomic understanding of catalytic reactions will contribute to computer simulations for a fast, resource-saving and cost-effective development of bespoke catalysts for P2X processes.

###

Original publication:

Loewert, M., Serrer, M.-A., Carambia, T., Stehle, M., Zimina, A., Kalz, K. F., Lichtenberg, H., Saraçi, E., Pfeifer, P., & Grunwaldt, J.-D. (2020). Bridging the gap between industry and synchrotron: an operando study at 30 bar over 300 h during Fischer-Tropsch synthesis. Reaction Chemistry & Engineering, 5(6), 1071-1082. https://doi.org/10.1039/c9re00493a External Link

More about the KIT Energy Center: http://www.energie.kit.edu External Link

Further material:

Link to the publication in Reaction & Chemical Engineering: https://pubs.rsc.org/en/content/articlelanding/2020/re/c9re00493a#!divAbstract External Link

Press contact:

Martin Heidelberger, Redakteur/Pressereferent, Tel.: +49 721 608-21169, [email protected]

Being “The Research University in the Helmholtz Association”, KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility, and information. For this, about 9,300 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 24,400 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life. KIT is one of the German universities of excellence.

Media Contact
Monika Landgraf
[email protected]

Original Source

https://www.kit.edu/kit/english/pi_2020_055_bespoke-catalysts-for-power-to-x.php

Related Journal Article

http://dx.doi.org/10.1039/c9re00493a

Tags: Chemistry/Physics/Materials SciencesEarth ScienceMathematics/StatisticsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

September 5, 2025
Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

September 5, 2025

Physicists Develop Visible Time Crystal for the First Time

September 5, 2025

Adaptive Visible-Infrared Camouflage Enables Wide-Spectrum Radiation Control for Extreme Temperature Environments

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Debunking Myths: Animal Encounters with Big Cats, Crocs

Mecp2 Mutation Elevates Anxiety in Zebrafish, No Social Change

Mitochondrial Genomes of Prototheca: Insights and Comparisons

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.