• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Belle II yields first results in search of the Z’ boson

Bioengineer by Bioengineer
April 8, 2020
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The Belle II experiment started about one year ago. Physical Review Letters has now published the initial results of the detector. The work deals with a new particle in the context of dark matter, which accounts for about 25 percent of the universe.

IMAGE

Credit: ill./©: Belle II

The Belle II experiment has been collecting data from physical measurements for about one year now. After several years of rebuilding work, both the SuperKEKB electron-positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate. Scientists at 12 German research institutions are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data. Johannes Gutenberg University Mainz (JGU) supported this project by developing and programming special electronics for monitoring the pixel vertex detector.

With the help of Belle II, scientists are looking for traces of new physics that can be used to explain the unequal occurrence of matter and anti-matter and the mysterious dark matter. One of the so far undiscovered particles that the Belle II detector is looking for is the Z? boson – a variant of the Z boson, which acts as an exchange particle for the weak interaction.

As far as we know, about 25 percent of the universe consists of dark matter, whereas visible matter accounts for just under 5 percent of the energy budget. Both forms of matter attract each other through gravity. Dark matter thus forms a kind of template for the distribution of visible matter. This can be seen, for example, in the arrangement of galaxies in the universe.

Link between dark and normal matter

The Z’ boson may play an interesting role in the interaction between dark and visible matter, it could be in fact a kind of mediator between the two forms of matter). The Z’ boson can – at least theoretically – result from the collision of electrons (matter) and positrons (anti-matter) in the SuperKEKB and then decay into invisible dark matter particles.

The Z’ boson can thus help scientists to understand the behavior of dark matter. What’s more, the discovery of the Z’ boson could also explain other observations that are not consistent with the Standard Model, the fundamental theory of particle physics.

Important clue: Detection of muon pairs

But how can the Z’ boson be detected in the Belle II detector? Not directly – that much is sure. Theoretical models and simulations predict that the Z’ boson could reveal itself through interactions with muons, the heavier relatives of electrons. If scientists discover an unusually high number of muon pairs of opposite charge after the electron/positron collisions as well as unexpected deviations in energy and momentum conservation, this would be an important indication of the Z? boson. However, the new Belle II data has not yet provided any indication of the Z? boson. But with the new data, the scientists can limit the mass and coupling strengths of the Z? boson with previously unattainable accuracy.

These initial results come from the analysis of a small amount of data collected during the start-up phase of SuperKEKB in 2018. Belle II went into full operation on March 25, 2019. Since then, the experiment has been collecting data while continuously improving the collision rate of electrons and positrons. Once the experiment is perfectly tuned, it will provide considerably more data than in the recently published analyses. The physicists thus hope to gain new insights into the nature of dark matter and other unanswered questions.

###

The German working groups in the Belle II experiment are funded by the following institutions and programs:

* German Federal Ministry of Education and Research (BMBF): collaborative research project “Exploration of the Universe and Matter” (ErUM)

* German Research Foundation (DFG) within the framework of Germany’s Excellence Strategy
ORIGINS: EXC-2094 – 390783311
Quantum Universe: EXC-2121 – 390833306

* European Research Council (ERC)

* European Union’s Horizon 2020 – grant agreement No 822070

* Helmholtz Association

* Max Planck Society.

Related links:

https://www.kek.jp/en/ – High Energy Accelerator Research Organization (KEK))

http://belle2.jp – Belle II experiment

https://www.kek.jp/en/newsroom/2020/04/07/0000/ – KEK press release “Belle II explores new ‘portal’ into dark matter – First results from the Belle II Experiment” (7 April 2020)

Read more:
https://www.uni-mainz.de/presse/20191_ENG_HTML.php – press release “First particles circulate in SuperKEKB accelerator” (14 April 2016)

Media Contact
Professor Dr. Concettina Sfienti
[email protected]

Original Source

https://www.uni-mainz.de/presse/aktuell/11213_ENG_HTML.php

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.124.141801

Tags: AstrophysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesNuclear PhysicsParticle PhysicsSpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Selective Arylating Uncommon C–F Bonds in Polyfluoroarenes

October 4, 2025
Building Larger Hydrocarbons for Optical Cycling

Building Larger Hydrocarbons for Optical Cycling

October 4, 2025

Scientists Discover How Enzymes “Dance” During Their Work—and Why It Matters

October 4, 2025

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Multimodal Language Models in Chemistry Research

Healthcare Workers’ Views on HIV and Non-Communicable Care

Supporting Caregivers of COPD Patients: Key Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.