• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Beetles rely on unique ‘back pockets’ to keep bacterial symbionts safe during metamorphosis

Bioengineer by Bioengineer
August 30, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Beetles of the genus Lagria need a little help from their bacterial friends throughout their immature life stages. But keeping them in the same spot throughout life isn’t feasible. This is because beetles are holometabolous insects, which undergo an overall bodily reorganization (metamorphosis) as pupae.

μCT scan

Credit: LV Flórez, RS Janke, S Moog, B Weiss, M Kaltenpoth

Beetles of the genus Lagria need a little help from their bacterial friends throughout their immature life stages. But keeping them in the same spot throughout life isn’t feasible. This is because beetles are holometabolous insects, which undergo an overall bodily reorganization (metamorphosis) as pupae.

Here, scientists show for the first time that the beetles have evolved an ingenious solution to this problem: female pupae keep their symbiotic bacteria in specialized pockets on their back. When they emerge as adults, they shuffle the bacteria out of these pockets, backwards and then on into their genital area.

“Here we show how an insect can maintain beneficial microbial partners despite the drastic rearrangements of body structures that occur during metamorphosis,” said corresponding author Dr Laura V Flórez, a researcher at the Department of Plant and Environmental Sciences of the University of Copenhagen. “By modifying unique ‘pockets’ on their backs, Lagria beetles manage to keep their protective symbionts and facilitate their relocation during pupation to newly developed adult organs.”

Unique ‘back pockets’

Females of many Lagria species carry a mix of beneficial bacteria in their accessory glands, a pair of glands next to the oviduct. When females lay eggs, the bacteria are ‘squeezed’ out of the glands and deposited onto the eggs’ surface. Antibiotics produced by the bacteria protect, eggs, larvae, and pupae of the beetles against fungi. In one of the species studied here, L. villosa, the largest component of the symbiotic mix is a strain of Burkholderia bacteria called Lv-StB, which has lost the genes and cellular structures for motility, and likely can’t survive for long outside the beetles.

Flórez and colleagues show that in L. villosa and L. hirta female pupae, the symbionts mostly live inside the three two-lobed pockets on the back of the thorax, where they may be nourished by the beetles. Such ‘back pockets’ in larvae and pupae aren’t known in any other insect. In female pupae, symbionts also congregate in a fourth spot, between bristles at the back of the head. The pockets are only vestigial in male pupae, and contain few or no symbionts. In adult females, the symbionts exclusively live inside the accessory glands, which are absent in males.

‘Long and winding road’

“The symbionts go from the highly exposed egg surface to colonize the pockets on the back of the larvae and pupae. Finally, they end up in specialized glands associated with the reproductive system of adult females,” summarized first author Rebekka S Janke, a doctoral student at the Johannes Gutenberg University of Mainz.

But how do the bacteria colonize the accessory glands after pupation? To answer this question, the authors scattered approximately 1m polystyrene fluorescent beads, 1.0 μm wide, across early pupae. They then show that after emergence, the majority of these beads ended up on the tip of the abdomen. The authors conclude that the beads, like presumably the symbionts, are shuffled towards the genitals by friction during the emergence process. The mechanism by which the symbionts then colonize the accessory glands of females is not yet known.

“In the adult stage, the main purpose of the symbiotic organs seems to be to enable successful transmission onto the egg stage and to the next generation. Since only females lay eggs, male adults do not need to carry these potentially costly symbionts and are a dead-end for the bacteria,” said Flórez.

Coauthor Dr Martin Kaltenpoth, a professor at the Max Planck Institute for Chemical Ecology in Jena, added: “To better understand how beneficial symbionts are transmitted and maintained within and across generations, we’ll need to identify which host and symbiont factors regulate symbiont establishment. For example, does the host select for specific symbionts? And through which mechanisms can immotile symbionts colonize the symbiotic organs?”



Journal

Frontiers in Physiology

DOI

10.3389/fphys.2022.979200

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Morphological adaptation for ectosymbiont maintenance and transmission during metamorphosis in Lagria beetles

Article Publication Date

30-Aug-2022

COI Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

Share12Tweet8Share2ShareShareShare2

Related Posts

El Niño Shifts Trigger Widespread Declines in Tropical Insect and Spider Populations

El Niño Shifts Trigger Widespread Declines in Tropical Insect and Spider Populations

August 6, 2025
Exploring Bacterial Biocontrol for Walnut Moth Pests

Exploring Bacterial Biocontrol for Walnut Moth Pests

August 6, 2025

Low-Sodium Mayonnaise via Vegetable Extract Emulsion

August 6, 2025

Boosting GABA and Cell Viability in Fermented Milk

August 6, 2025

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    74 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ultrafast Light Switches: Breakthroughs in Nanophotonics

Lamellar P2-Na0.7CoO2 Boosts Sodium-Ion Battery Longevity

Could Lithium Hold the Key to Understanding and Treating Alzheimer’s Disease?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.