• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Battling BPA with biofilms

Bioengineer by Bioengineer
October 2, 2019
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Pitt researcher awarded $420,000 NSF grant to study growing biofilms on electrodes to degrade bisphenol A

IMAGE

Credit: University of Pittsburgh

PITTSBURGH (Oct. 2, 2019) — Chemicals found in many common plastic consumer items have the potential to contaminate drinking water. One in particular, bisphenol A (BPA), could contribute to fertility problems, male impotence, heart disease and other conditions.1 Biofilms, although a common tool used by engineers to combat contaminants in water, often need the support of other technology to remove chemicals like BPA.

New research from the University of Pittsburgh’s Swanson School of Engineering has received $420,000 from the National Science Foundation to combine biofilms and electrodes to degrade BPA.

The project, titled “Collaborative Research: Engineering Biofilm-Electrode for Organic Contaminant Degradation,” will be led by Pitt’s David Sanchez, PhD, assistant professor of civil and environmental engineering and assistant director of the Mascaro Center for Sustainable Innovation. Sanchez and his team will collaborate on the project with Seok Hoon Hong, PhD, assistant professor of chemical and biological engineering at the Illinois Institute of Technology.

“Combining biofilms and electrochemistry can enhance our methods for removing contaminants from water,” explains Sanchez. “By finding the right combination of electrode morphology and microorganisms, we can ‘supercharge’ the ability of the microorganisms to degrade BPA.”

BPA is commonly used in food packaging, such as plastic food and drink containers and as a lining in metal food cans to prevent corrosion. It has an estimated production of 5 million tons per year and is used in everyday items from receipt paper to dental sealants. Because of its prevalence, BPA frequently shows up in the human body: the EPA found detectable levels of BPA in 93 percent of the urine samples they tested in the U.S.

Biofilms are collections of microorganisms growing on surfaces – in this case, an electrode. The primary goal of the research is to increase the amount of BPA they can degrade by creating a perfect match between organism and electrode. Sanchez will be developing an electrode that gives the bacteria the ideal environment to thrive, while Hong will engineer and select the bacteria themselves.

“I believe there’s a ‘Goldilocks’ condition, where the properties of the electrode are just right to select for these microorganisms, and my goal is to find it,” says Sanchez. “If we’re successful, this will be a more effective and sustainable way to target the removal of these types of contaminants from water.”

The National Toxicology Program has expressed concern about the potential effects of BPA on human reproductive and development–another study showed that such exposure to BPA in zebrafish disrupted their bodies’ microbial communities, and similar disruption has also been observed in people with gastrointestinal diseases and autism spectrum disorder.

“It is critical that we as a society prevent the impact chemical pollutants are having on our bodies and our planet,” says Sanchez. “We hope our research is a step toward developing effective technologies that reduce our exposure to BPA, among other contaminants.”

###

The grant began on Sept. 1, 2019, and is expected to last through August 2022.

1Brazier, Yvette and Falck, Suzanne MD, FACP. Medical News Today, 25 May 2017.

Media Contact
Maggie Pavlick
[email protected]

Original Source

https://www.engineering.pitt.edu/News/2019/Sanchez-NSF-Grant-BPA/

Tags: Civil EngineeringEcology/EnvironmentHydrology/Water ResourcesPollution/RemediationResearch/DevelopmentTechnology/Engineering/Computer Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Hyaluronan Focus in Septic Shock and Pancreatitis

October 13, 2025

Skin Symptoms Could Signal Early Mental Health Risks, Study Finds

October 12, 2025

Exploring Breastfeeding Equity in Ethiopian Infants

October 12, 2025

Revolutionary Skin Patch Delivers Multimodal Haptic Feedback

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1226 shares
    Share 490 Tweet 306
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    90 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hyaluronan Focus in Septic Shock and Pancreatitis

Skin Symptoms Could Signal Early Mental Health Risks, Study Finds

Exploring Breastfeeding Equity in Ethiopian Infants

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.