• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Balancing the seesaw: Simultaneously enhancing strength and elongation in metallic materials

by
July 29, 2024
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Just as one side of a seesaw rises while the other falls, in the realm of metallic materials, “strength” and “elongation” typically conflict with each other. However, a collaborative team from POSTECH and Northwestern University has recently introduced a groundbreaking technology that enhances both properties.

Analysis of spinodal decomposition and strengthening using nano-atomic-scale analysis

Credit: POSTECH

Just as one side of a seesaw rises while the other falls, in the realm of metallic materials, “strength” and “elongation” typically conflict with each other. However, a collaborative team from POSTECH and Northwestern University has recently introduced a groundbreaking technology that enhances both properties.

 

A research team, consisting of Professor Hyoung Seop Kim from the Graduate Institute of Ferrous & Eco Materials Technology and the Department of Materials Science and Engineering, Professor Yoon–Uk Heo from the Graduate Institute of Ferrous & Eco Materials Technology, and PhD candidate Hyojin Park from the Department of Materials Science and Engineering at POSTECH, collaborated with Dr. Farahnaz Haftlang from Northwestern University’s Department of Materials Science & Engineering. Together, they have tackled a long-standing issue in metals research—trade-off between strength and elongation. Their breakthrough involves designing an alloy that boasts both high strength and high elongation. This pioneering research has been featured in the online edition of the international journal “Nature Communications.”

 

Yield strength is the minimum stress at which a material, like metal, starts to deform. To enhance a material’s durability and structural safety, its yield strength must be increased, typically by reinforcing its microstructure with “precipitates”—tiny particles embedded within the metal. However, in this process, the precipitate often differs in structure from the base metal, leading to a reduction in elongation as strength increases. This trade-off between “strength” and “elongation” has traditionally made it challenging to improve both properties simultaneously.

 

POSTECH Professor Hyoung Seop Kim’s team has introduced a novel approach to address this issue, known as “Spinodal Decomposition.” This process involves the spontaneous separation of a solid solution into two distinct phases, resulting in nanoscale structures with regularly arranged atoms.

 

In this study, copper (Cu) and aluminum (Al) were added to an iron-based medium-entropy alloy to trigger periodic spinodal decomposition at the nanoscale. This process led to spinodal hardening, a phenomenon that enhances resistance to structural deformation. Consequently, the resulting microstructure boosts the material’s strength. The resulting microstructure, with its uniformly arranged features, effectively distributes strain throughout the material. This distribution helps minimize localized deformation, thereby increasing overall strength while preserving elongation.

 

Experiments revealed that alloys produced using the team’s method demonstrated superior structural integrity compared to traditional alloys, achieving a yield strength of 1.1 GPa (gigapascals). This represents a 187 percent improvement over the alloy without spinodal decomposition. Remarkably, even with this increased yield strength, the alloy maintained nearly the same elongation (28.5%) as before. This advancement enables both improved strength and elongation.

 

POSTECH Professor Hyoung Seop Kim remarked, “We have explored the mechanical properties of spinodal structures in alloys with complex compositions.” He added, “Our high-strength, high-elongation alloy technology has the potential to enhance products across various industries including aerospace, automotive, energy, and electronics by making them lighter and more durable.”

 

The research was conducted with support from the Nanomaterial Technology Development Program of the Ministry of Science and ICT and the National Research Foundation of Korea, and the SRC/ERC.



Journal

Nature Communications

DOI

10.1038/s41467-024-50078-6

Article Title

Periodic spinodal decomposition in double–strengthened medium–entropy alloy

Article Publication Date

9-Jul-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Breakthrough Self-Assembling Material Paves the Way for Fully Recyclable EV Batteries

Breakthrough Self-Assembling Material Paves the Way for Fully Recyclable EV Batteries

August 28, 2025
Wayne State Study Advances Quality of Life for Individuals with Type 1 Diabetes

Wayne State Study Advances Quality of Life for Individuals with Type 1 Diabetes

August 27, 2025

Wayne State Researchers Pioneer Advances to Enhance Quality of Life for Individuals with Type 1 Diabetes

August 27, 2025

Electrostatic Map Reveals Non-Covalent Metal–Organic Frameworks

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rewrite Insulin resistance in school-age children: comparison surrogate diagnostic markers as a headline for a science magazine post, using no more than 8 words

Rewrite Validation of the cancer fatigue scale (CFS) in a UK population as a headline for a science magazine post, using no more than 7 words

Rewrite Recyclable luminescent solar concentrator from lead-free perovskite derivative as a headline for a science magazine post, using no more than 8 words

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.