• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Balancing building temperatures sustainably: The Zero-Energy Switchable Radiative Cooler

Bioengineer by Bioengineer
March 4, 2024
in Science News
Reading Time: 2 mins read
0
The newly developed Zero-Energy Switchable Radiative Cooler (ZESRC) automatically switches modes with temperature changes, cooling under high temperatures, and heating under low temperatures.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Heating and cooling buildings currently accounts for a significant portion of global energy consumption, posing a challenge for reducing reliance on fossil fuels. By using less energy to heat and cool our buildings, we can take a big step towards sustainable building practices that help reduce or eliminate consumption of fossil fuels for heating and cooling.

The newly developed Zero-Energy Switchable Radiative Cooler (ZESRC) automatically switches modes with temperature changes, cooling under high temperatures, and heating under low temperatures.

Credit: Credit: Chen et al., doi 10.1117/1.JPE.14.028501.

Heating and cooling buildings currently accounts for a significant portion of global energy consumption, posing a challenge for reducing reliance on fossil fuels. By using less energy to heat and cool our buildings, we can take a big step towards sustainable building practices that help reduce or eliminate consumption of fossil fuels for heating and cooling.

In light of this challenge, a recent study from Wuhan University of Technology introduced a practical innovation, called the Zero-Energy Switchable Radiative Cooler (ZESRC). The ZESRC is a clever device designed to keep buildings at the right temperature without using any extra energy. It works by using a special method based on how different materials expand when they get hot. This straightforward principle allows it to easily switch between cooling and heating modes, to minimize energy use while maintaining comfortable indoor conditions.

As reported in the SPIE Journal of Photonics for Energy (JPE), field experiments demonstrate the ZESRC’s effectiveness across seasons, with notable temperature reductions of up to 7.1°C in summer and increases of up to 7.5°C in winter compared to outdoor conditions.

In addition to designing, building, and testing the ZESRC, the researchers also made a map to show how efficiently the ZESRC functions in different climates. Compared to other devices that only use solar heating or cooling, the ZESRC managed to reduce building energy consumption by 14.3 percent. That’s a big deal because energy conservation means we can significantly reduce our carbon footprint.

Going forward, the research team aims to optimize the ZESRC design for improved performance and test its application across different global climates and buildings. They hope that, as a practical and energy-efficient solution for indoor climate control, the ZESRC could play a crucial role in helping to reach the global goal of bringing energy-related carbon dioxide emissions to net zero by 2050.

For details, see the original article by Chen et al., “Zero-energy switchable radiative cooler for enhanced building energy efficiency,” J. Photon. Energy 14(2), 028501 (2024), doi 10.1117/1.JPE.14.028501.



Journal

Journal of Photonics for Energy

DOI

10.1117/1.JPE.14.028501

Article Title

Zero-energy switchable radiative cooler for enhanced building energy efficiency

Article Publication Date

26-Feb-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Resveratrol Activation of SIRT1 Reduces Trophoblast Pyroptosis

November 5, 2025
blank

Strategies for Managing Nuclear Waste: What Should Countries Consider?

November 5, 2025

New Study Reveals How Targeting Macrophage “Bodyguard” Cells May Overcome Endocrine Resistance in Breast Cancer Treatment

November 5, 2025

MIT Study Identifies Promising Targets for Next-Generation Tuberculosis Vaccine

November 5, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35
>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Resveratrol Activation of SIRT1 Reduces Trophoblast Pyroptosis

Strategies for Managing Nuclear Waste: What Should Countries Consider?

New Study Reveals How Targeting Macrophage “Bodyguard” Cells May Overcome Endocrine Resistance in Breast Cancer Treatment

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.