• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Bacterial population growth rate linked to how individual cells control their size

Bioengineer by Bioengineer
March 25, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

When family weddings all seem to coincide with one another, the phenomenon happens for a reason. An individual and their first cousins tend to be of a similar age, so their weddings usually happen in a similar time frame. But weddings for extended family members, say second and third cousins, tend to be more spread out. This is because the time between one generation to the next varies, meaning that families become more spread out from generation to generation.

A new study by University of Pennsylvania post-doc Farshid Jafarpour from the Department of Physics & Astronomy, who works in the lab of Andrea Liu, reveals that variations in generation times don’t accumulate over multiple generations in single-celled organisms, like bacteria. He proposes a new theory, published in Physical Review Letters, that describes how factors that regulate the size of individual cells influence the growth rate of an entire population.

Unlike animals and plants, bacteria increase the size of their population simply by growing in size and then splitting in half to make two new bacterial cells. By studying bacteria when they are dividing on a regular basis, known as the exponential growth phase, Jafarpour was able to develop a model that mathematically describes this fundamental phase of population growth. “If you want to study the physics of bacterial growth, you really want to remove all the other parts that are not part of the growth phase,” he says.

Jafarpour used a combination of math equations, computer simulations, and data from biology experiments that tracked the growth of individual bacteria cells. He was surprised to find that the model predicts that bacteria oscillate between slower and faster bursts of growth, in “synchronized bursts of divisions,” instead of the population growing at a constant rate. These population-level oscillations in growth now provides a new, mathematical way for biologists to think about and to study population dynamics.

Previously, biologists knew that the generation time in bacteria populations was directly related to the size of individual cells. If a bacterium grows for too long, for example, its daughter cells are larger, and they must divide earlier to compensate for their size difference. This process, known as cell-size regulation, also cancels out some of the variability in the generation time, which keeps the division times in sync with one another for a much longer period of time than previously expected. It’s this individual metric of cell size regulation that also seems to be causing the oscillations in growth rates seen in Jafarpour’s model.

“The variability in generation times has two different sources: the variability in growth and the variability in division,” Jafarpour explains. “The interesting result is that cell-size regulation is completely cancelling out the variability in division, so the only thing that’s left is the variability in the growth of the individual cells. And, because that’s smaller, the oscillations last a lot longer than you would expect.”

This new model can now be used by biologists to obtain information on the variability of individual growth rates, which are difficult to measure in the lab but are extremely important for studying bacterial evolution. And while this model would need some modifications before it could be used to study other species, Jafarpour believes that helping biologists gain a better understanding of the physics that underlie population growth in bacteria is just one of many ways that physics can support the work done by biologists.

“Biology has become more focused on figuring out the molecular basis of mechanisms since the 1950s with the discovery of the structure of DNA, but now we are reaching a level where we have to go back and do more quantitative studies. Physicists have a long tradition of working with real-world systems, knowing how to apply a lot of the quantitative methods developed in mathematics and also understanding what variables are relevant and what variables aren’t,” Jafarpour says.

###

This research was supported by National Science Foundation Grant DMR-1506625.

Media Contact
Erica Brockmeier
[email protected]
http://dx.doi.org/10.1103/PhysRevLett.122.118101

Tags: Biomechanics/BiophysicsChemistry/Physics/Materials Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Innovative Technology Developed to Precisely Control Pore Wall Crystallinity

August 18, 2025
Future Reactors May Harness Nuclear Waste as a Fuel Source

Future Reactors May Harness Nuclear Waste as a Fuel Source

August 18, 2025

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

August 15, 2025

Efficient Framework Models Ionic Materials’ Surface Chemistry

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hyperglycemia in Preemies Linked to 18-Month Outcomes

Innovative Technology Developed to Precisely Control Pore Wall Crystallinity

Researchers Unleash Wireless Innovation to Transmit Vast Amounts of Data

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.