• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Bacterial imaging probe is safe for patient use, study finds

Bioengineer by Bioengineer
October 24, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Imaging technology that detects deadly pneumonia infections in under 60 seconds is safe and practical for clinical use, a study has found.

Tests on patients with suspected infections found the approach could detect bacteria deep inside the lung where other technologies fail to reach.

Experts say the technology will enable bedside decision making in critically ill patients, helping to avoid unnecessary use of antibiotics.

It could also help doctors to better monitor patients' illness, so that treatment can be stopped once infection has cleared, or if alternative therapies are needed.

The technology could also help us to better understand lung infections, paving the way to develop improved treatments.

Each year, across the world, around 20 million patients in intensive care need ventilators to help them breathe. Up to one third are suspected to have serious lung infections, such as pneumonia. This leads to huge antibiotic use, which can increase drug resistance and make bacteria harder to treat.

Doctors currently test fluid samples from patients' lungs to check if bacteria are present, but these tests can take days to return a result and may be inaccurate.

They can also use x-rays, which are overly sensitive and can lead to patients being treated with powerful but unnecessary antibiotics.

Monitoring patient responses to these antibiotic treatments in real time is not feasible with either of these approaches.

The new imaging technology involves spraying chemical probes into patients' lungs that light up when they attach to specific types of infectious bacteria.

This fluorescence is detected using tiny fibre-optic tubes that travel deep inside patients' lungs.

Researchers focused on one of the new probes, designed to detect a subset of bacteria called Gram-negative bacteria. These are fast becoming the hardest infections to treat with antibiotics and are a major cause of pneumonia.

The team developed the technology in the lab and then tested the probe in patients with a disease called bronchiectasis, which causes repeated cycles of inflammation and infection. They also tested intensive care patients who had suspected infection.

Striking fluorescence was seen in lungs of patients with bronchiectasis who had Gram-negative bacteria in the deep parts of their lungs.

Bacteria were also successfully visualised in intensive care patients using the new technology with striking results. In some of these patients, conventional methods had returned negative results. The researchers say this is not surprising as the individuals were being treated with several types of powerful antibiotics.

The underlying research was supported by Wellcome and the UK's Engineering and Physical Sciences Research Council (EPSRC) through support of the Proteus consortium, which includes the Universities of Edinburgh, Bath and Heriot-Watt.

Proteus is also funded by CARB-X, the world's largest public-private partnership devoted to antibacterial early development research.

The research is published in the journal Science Translational Medicine.

Kev Dhaliwal, Professor of Molecular Imaging & Healthcare Technology at the University of Edinburgh and a Consultant Respiratory Physician, said: "Drug-resistant bacteria are fast emerging as the greatest threat to humanity"

"We urgently need to develop and test new ways to diagnose infections in patients and also to improve our understanding of human disease. Our interdisciplinary Proteus team is developing next-generation technologies to improve patient care"

"The teamwork required to deliver this bench to bedside technology has taken many years and we are incredibly grateful to the patients and families who allowed us to test these exciting approaches and now the follow-on funding to further develop and test this technology in intensive care units around the UK."

###

Media Contact

Jen Middleton
[email protected]
01-316-506-514
@edinunimedia

http://www.ed.ac.uk

http://dx.doi.org/10.1126/scitranslmed.aal0033

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Reevaluating Xylotini: Codon Bias and Phylogenetic Insights

November 1, 2025
Exploring Symbiotic Diversity in Moroccan Bradyrhizobium

Exploring Symbiotic Diversity in Moroccan Bradyrhizobium

October 31, 2025

Unexpected Breakthrough: Student’s Research Uncovers Crucial New Insights into HPV

October 31, 2025

Sheathed Flagellum Structures Explain Vibrio cholerae Motility

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unlocking Metal Recovery from Manganese Residues

Barriers and Boosts to Person-Centered Nursing Care

Racial Disparities in Prostate Cancer Treatment Explored

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.