• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Bacterial discovery solves 20-year-old molecular paleontology mystery

Bioengineer by Bioengineer
January 23, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A fatty molecule thought to be unique to flowering plants has turned up in bacteria skimmed from the Adriatic Sea. The surprising finding solves a 20-year-old paleontological mystery and could affect how scientists interpret the presence of this molecule in the ecological record. Where once it suggested the presence of land and flowering plants, it could indicate marine or freshwater-dwelling bacteria instead.

The molecule in question, isoarborinol, is a fatty molecule, or lipid, whose only known biological sources were certain flowering plants, or angiosperms. For this reason, when geobiologists detect isoarborinol they assume flowering plants once flourished in that spot.

"Arborinol lipids can be preserved in sedimentary rocks for millions of years, so they can function as 'molecular fossils' that can inform us about the types of organisms and environments on early Earth," said study co-author Paula Welander, a geobiologist at Stanford's School of Earth, Energy & Environmental Sciences.

In the 1990s, however, scientists discovered fossil traces of isoarborinol in ancient sediments from Germany that dated back to the Permian and Triassic eras — about 100 million years before the first appearance of flowering plants. At the time, scientists speculated that an as-yet unknown microbial source of these lipids must also exist, but nobody had found evidence to support this hypothesis — until now.

In the new study, published Dec. 26 in Proceedings of the National Academy of Sciences, Welander and her team identified a modern-day marine bacterium (Eudoraea adriatica), previously isolated from the Adriatic Sea, that produces two lipids with chemical structures that are similar to isoarborinol.

"The lipids, which we dubbed eudoraenol and adriaticol, were completely new molecules that hadn't been seen before," Welander said. "They were the first new arborinol lipids to be discovered in 30 years, and the first to be identified outside of the plant kingdom."

Because arborinol lipids are found in sediments from the early Earth, a better understanding of how they're produced could change how paleontologists interpret the fossil record. "If these lipids are discovered in sediment cores from ancient lakes, the question is, do they represent terrestrial input from flowering plants or were there actually lake bacteria living in low-oxygen environments that were producing them?" Welander said.

The implications extend beyond geobiology, she added. Understanding the chemistry behind how certain lipids are produced could help scientists better synthesize similar structures in the lab. "Our study of the biochemistry of these proteins could contribute to our understandings of the synthesis of novel compounds that have clinical or biotechnological significance," Welander said.

In addition to being produced by a completely different organism, the bacterial protein required to make the lipids also appears to be unique. "Angiosperms and bacteria developed phylogenetically distinct but remarkably similar enzymes to produce these lipids," Welander said.

Experiments by Welander's lab revealed that the protein that produces the bacterial lipid is unrelated in an evolutionary sense to the protein that produces isoarborinol in flowering plants. This matters because it demonstrates that the microbe did not acquire this protein from a plant — through horizontal gene transfer, for example — but rather evolved the ability to make arborinols independently. "It also adds credence to the idea that arborinols in the rock record — and modern environments, too — could come from a bacterial source," Welander said.

###

Other co-authors on the study, titled "Synthesis of arborane triterpenols by a bacterial oxidosqualene cyclase," include Amy Banta, Jeremy Wei and Clare Gill of Stanford University, and José-Luis Giner of the State University of New York.

The study was funded by the National Science Foundation.

Media Contact

Ker Than
[email protected]
650-723-9820
@stanfordearth

https://earth.stanford.edu/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Novel V2O5/ZnO Nanocomposite Electrodes for Energy Storage

September 12, 2025
blank

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025

Salvia Spinosa’s Antimicrobial Effect on Enterococcus faecalis

September 12, 2025

Gene Body Methylation Drives Diversity in Arabidopsis

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel V2O5/ZnO Nanocomposite Electrodes for Energy Storage

Evaluating Energy Digestibility in Quail Feed Ingredients

Salvia Spinosa’s Antimicrobial Effect on Enterococcus faecalis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.