• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Bacteria-coated nanofiber electrodes clean pollutants in wastewater

Bioengineer by Bioengineer
June 28, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ITHACA, N.Y. – Cornell University materials scientists and bioelectrochemical engineers may have created an innovative, cost-competitive electrode material for cleaning pollutants in wastewater.

The researchers created electro-spun carbon nanofiber electrodes and coated them with a conductive polymer, called PEDOT, to compete with carbon cloth electrodes available on the market. When the PEDOT coating is applied, an electrically active layer of bacteria — Geobacter sulfurreducens — naturally grows to create electricity and transfer electrons to the novel electrode.

The conducting nanofibers create a favorable surface for this bacteria, which digests pollutants from the wastewater and produces electricity, according to the research.

"Electrodes are expensive to make now, and this material could bring the price of electrodes way down, making it easier to clean up polluted water," said co-lead author Juan Guzman, a doctoral candidate in the field of biological and environmental engineering. Under a microscope, the carbon nanofiber electrode resembles a kitchen scrubber.

The electrode was made by co-lead author Meryem Pehlivaner, currently a doctoral student at Northeastern University, with senior author Margaret Frey, professor of fiber science and an associate dean of the College of Human Ecology. Pehlivaner fabricated the carbon nanofibers via electrospinning and carbonization processes. After a few hours electrospinning, a thick nanofiber sheet – visible to the naked eye – emerges.

Pehlivaner reached out to Guzman and senior author Lars Angenent, professor of biological and environmental engineering, for collaboration in applying the carbon nanofiber electrodes to simultaneous wastewater treatment and production of electrical energy.

The customizable carbon nanofiber electrode was used for its high porosity, surface area and biocompatibility with the bacteria. By adhering PEDOT, the material gets an improved function, according to the researchers.

Guzman said wastewater treatment plants do not employ this method — yet. On a large scale, the bacteria at the electrode could capture and degrade pollutants from the wastewater that flows by it. Such a technology can improve wastewater treatment by allowing systems to take up less land and increase throughput.

Concepts like this happen on campuses where faculty and students want to communicate and collaborate, Angenent said. "This defines radical collaboration," he said. "We have fiber scientists talking to environmental engineers, from two very different Cornell colleges, to create reality from an idea — that was more or less a hunch – that will make cleaning wastewater better and a little more inexpensive."

###

The research, "Performance of Electro-Spun Carbon Nanofiber Electrodes With Conductive Poly (3,4-Ethylenedioxythiophene) Coatings in Bioelectrochemical Systems," will be published July 15 in the Journal of Power Sources but is available online now.

The National Science Foundation, through Guzman's graduate research fellowship, supported this work. Frey and Angenent are faculty fellows at Cornell's Atkinson Center for a Sustainable Future, where faculty engage in cross-campus collaboration.

Media Contact

Daryl Lovell
[email protected]
607-592-3925
@cornell

http://pressoffice.cornell.edu

http://news.cornell.edu/stories/2017/06/bacteria-coated-nanofiber-electrodes-digest-pollutants

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Comparing Treatments for Advanced Esophageal Cancer

Immune Checkpoint Inhibitors Show Promise in Unknown Cancers

Gallbladder Removal Disrupts Gut Microbes, Fuels Tumors

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.