• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Bac-for good: Bacteria passed between generations benefits you more…

Bioengineer.org by Bioengineer.org
January 25, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo credit: C. Frazee, and contributed by M. McFall-Ngai

Bacteria passed straight to children have more healthcare benefits than if they are transmitted via the surrounding environment, new Oxford University research reveals.

Many insects and plant species carry beneficial bacteria, which provide a variety of services. Some provide nutrients, such as those living in aphids, the green and black fly which plague garden plants. Others help their animal hosts defend against parasites. However, while animals would die without some bacteria, they would hardly notice the absence of others. Why do we get this variation?

New research, published in Nature Communications, researchers from the University of Oxford, Department of Zoology, tracked the evolutionary history of 106 bacterial symbioses, in a range of animal plant and fungi species.

The findings have revealed that how bacteria is passed and contracted is key to the intensity of symbiont relationships. When bacteria are passed vertically, straight from mother to offspring, they tend to be much better for their hosts than if they are transmitted via the environment (horizontally).

The team found that when bacteria are passed on vertically, hosts evolve to depend on them. Removing these bacteria can have a significant negative impact on the host. In the case of Aphids, also known as plant lice, individuals die if you take away their bacteria. In contrast, bacteria that are passed via the environment, has a smaller impact. Plants such as peas and beans acquire Rhizobia bacteria from the soil, which can extract nitrogen from the air and put it into a form that the plant can use. Rhizobia plays an important role in plant rotations, but the plants do not die without them.

The paper's co-author, Professor Stuart West of Oxford's Department of Zoology, said: 'If a bacteria is passed on vertically, it has a vested interest in its host's wellbeing. A healthy host, who is doing well, will produce more offspring, and in doing so, it will also pass on its bacteria as well. These offspring will then follow the same cycle with the next generation, and so on. The vertically transmitted symbionts have a lot to gain from a healthy, happy host. Whereas those passed on horizontally, via the environment, are less invested in their host's fitness and wellbeing, since it has no bearing on their own success.'

The study represents a first step towards improving understanding of symbiont relationships and their benefit or lack of benefit, for plant and insect species. As humans interact with a lot of bacteria, with further research, the work could be used to inform medical understanding.

###

Notes to editors:

The full study 'The evolution of host-symbiont dependence' was published in Nature Communications and the DOI link is: 10.1038/NCOMMS15973

Bacterial symbiosis considered: https://www.nature.com/articles/ncomms15973/figures/2

For further information please contact Lanisha Butterfield in the University of Oxford press office at [email protected] or on+44 (0)1865 280531

The Mathematical, Physical and Life Sciences Division (MPLS) is one of four academic divisions at the University of Oxford, representing the non-medical sciences. Oxford is one of the world's leading universities for science, and MPLS is at the forefront of scientific research across a wide range of disciplines. Research in the mathematical, physical and life sciences at Oxford was rated the best in the UK in the 2014 Research Excellence Framework (REF) assessment. MPLS received £133m in research income in 2014/15.

Media Contact

Lanisha Butterfield
[email protected]
01-865-280-531
@UniofOxford

http://www.ox.ac.uk/

Share12Tweet7Share2ShareShareShare1

Related Posts

Bifidobacterium Boosts Gut Health in Preterm Infants

November 9, 2025
blank

Stress, Flexibility, and Perception in Student Mental Health

November 9, 2025

Oleanolic Acid: A Multi-Strategy Weapon Against Cancer

November 9, 2025

Embryonic Heat Manipulation: Metabolic Programming Insights

November 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1303 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Bifidobacterium Boosts Gut Health in Preterm Infants

Stress, Flexibility, and Perception in Student Mental Health

Oleanolic Acid: A Multi-Strategy Weapon Against Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.