• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Aye group discovers avenue for precision cancer treatment

Bioengineer by Bioengineer
August 1, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ITHACA, N.Y. – One of the goals of personalized medicine is to be able to determine which treatment would work best by sequencing a patient's genome. New research from the lab of Yimon Aye, assistant professor of chemistry and chemical biology, could help make that approach a reality.

Using her group's novel chemical procedure dubbed "T-REX," along with a patent-pending targeting molecule also developed in her lab, Aye and her group have uncovered interesting facets of several well-known cancer-cell mutations that, if present in a patient, could inform treatment options and potentially produce more favorable outcomes.

"People wonder why certain drugs are more efficient in one individual over another," said Aye, a Milstein Sesquicentennial Fellow in the College of Arts and Sciences who also has a joint appointment in the Department of Biochemistry at Weill Cornell Medicine. "Our discovery gives us a foundation to think about and design inhibitors that will … be much more effective in the patients carrying certain mutations."

The Aye Lab has published two related papers on this discovery in the last couple of months, both in Cell Chemical Biology. "Privileged Electrophile Sensors: A Resource for Covalent Drug Development" was published online June 22; "β-TrCP1 Is a Vacillatory Regulator of Wnt Signaling" was published online July 20.

The first paper explains how reduction-oxidation, or redox, signaling — which is commonplace inside cells — affects the activity of specific enzymes, and how certain enzymes' redox-specific processes could be harnessed for targeted drug design.

Research for the second paper started to test that theory. To determine which signals are affecting the response of a particular protein, the group used its T-REX procedure coupled with a widely used strategy to deplete the cell of a specific protein of interest.

One challenge is that multiple variations, or isoforms, of the same protein can all catalyze the same cellular function, "but the nuances of biology rest in how individual isoforms are regulated," Aye said.

"Some may be important in only certain types of tumors, or certain types of cells, so being able to discriminate one isoform over the other is important," she said.

The group's first key finding: The "cross-talk," or interaction back and forth, between cell signaling pathways is regulated depending on the concentration of a certain transcription factor (Nrf2), a fact that isn't clear unless you are able to selectively stimulate Nrf2 signaling, a method Aye pioneered.

The second, and perhaps more interesting in terms of disease: A key mutation of cancer cells on the N-terminus — the start of a protein chain, which often contains key signaling information — would make them more susceptible to certain targeted therapeutics than those without the mutation.

"What we've discovered as a strategy is a means to target this pathway in the cancer cells that carry selective mutations on this domain [the N terminus]," Aye said. "Potentially, patients can be genotyped to see if they carry these mutations, and they should respond much better to small molecules that activate antioxidant response."

Aye said understanding the many complexities of oncogenesis and cell signaling is crucial to developing better therapies for cancer and other diseases. "We could design much more selective therapeutics by understanding the underlying cross-talk," she said.

###

Marcus J.C. Long, a postdoctoral researcher in the Aye Lab, was lead author on the first paper and co-lead with former postdoc Hong-Yu Lin on the second. Other contributors included current postdoc Yi Zhao, doctoral students Saba Parvez and Jesse Poganik, and undergraduate chemistry and biology major Paul Huang '18. All are members of the Aye Lab and the Department of Chemistry and Chemical Biology.

This work was supported by grants from the National Science Foundation, the National Institutes of Health, the Sloan Fellowship, the Beckman Foundation and the Office of Naval Research.

Media Contact

Daryl Lovell
[email protected]
607-592-3925
@cornell

http://pressoffice.cornell.edu

http://news.cornell.edu/stories/2017/07/aye-group-discovers-avenue-precision-cancer-treatment

Share12Tweet7Share2ShareShareShare1

Related Posts

Orogeny Fuels Spider Family Diversification in Asia

Orogeny Fuels Spider Family Diversification in Asia

September 28, 2025

Unveiling Cacna1e Splice Variants’ Functional Diversity

September 28, 2025

Key Genes Uncovered for Banana Blood Disease Resistance

September 28, 2025

Streptococcus anginosus Found Across Female Urogenital Sites

September 28, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    85 shares
    Share 34 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Addressing Frailty and Polypharmacy in Elderly Home Care

Unplanned, Premature Births Outside Hospital Present Critical Challenges for Emergency Responders

Hypnosis Enhances Comfort of Ventilation Masks for Patients with Respiratory Issues

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.