• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, February 3, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Awake brings proton bunches into sync

Bioengineer by Bioengineer
April 30, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Important milestone for next-generation acceleration experiment

IMAGE

Credit: AWAKE

The future of particle acceleration has begun. Awake is a promising concept for a completely new method with which particles can be accelerated even over short distances. The basis for this is a plasma wave that accelerates electrons and thus brings them to high energies. A team led by the Max Planck Institute for Physics now reports a breakthrough in this context. For the first time, they were able to precisely time the production of the proton microbunches that drive the wave in the plasma. This fulfills an important prerequisite for using the Awake technology for collision experiments.

How do you create a wave for electrons? The carrier substance for this is a plasma (i.e., an ionized gas in which positive and negative charges are separated). Directing a proton beam through the plasma creates a wave on which electrons ride and are accelerated to high energies.

The proton source of Awake is the SPS ring at Cern, a pre-accelerator for the 27-kilometer circumference ring of the Large Hadron Collider (LHC). It produces proton bunches about 10-cm long. “However, in order to generate a large amplitude plasma wave, the proton bunch length must be much shorter – in the millimeter range,” explains Fabian Batsch, PhD student at the Max Planck Institute for Physics.

The scientists take advantage of self-modulation, a “natural” interaction between the bunch and plasma. “In the process, the longer proton bunch is split into high-energy proton microbunches of only a few millimeters in length, building the train beam,” says Batsch. “This process forms a plasma wave, which propagates with the train travelling through the plasma field.”

Precise timing allows ideal electron acceleration

However, a stable and reproducible field is required to accelerate electrons and bring them to collision. This is exactly what the team has found a solution for now. “If a sufficiently large electric field is applied when the long proton bunch is injected and the self-modulation is thus immediately set in motion.”

“Since the plasma is formed right away, we can exactly time the phase of the short proton microbunches,” says Patric Muggli, head of the Awake working group at the Max Planck Insstitute for Physics. “This allows us to set the pace for the train. Thus, the electrons are caught and accelerated by the wave at the ideal moment.”

First research projects in sight

The Awake technology is still in the early stages of development. However, with each step toward success, the chances of this accelerator technology actually being used in the coming decades increase. The first proposals for smaller accelerator projects (e.g., for example to study the fine structure of protons) are to be made as early as 2024.

According to Muggli, the advantages of the novel accelerator technology – plasma wakefield acceleration – are obvious: “With this technology, we can reduce the distance needed to accelerate electrons to peak energy by a factor of 20. The accelerators of the future could therefore be much smaller. This means: Less space, less effort, and therefore lower costs.”

###

Original publication

F. Batsch et al.

Transition between instability and seeded self-modulation of a relativistic particle bunch in plasma

Physical Review Letters, 23 April 2021 (Vol. 126, No. 16)

Media Contact
Dr. Patric Muggli
[email protected]

Original Source

https://www.mpg.de/16763868/awake-protons

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.126.164802

Tags: Chemistry/Physics/Materials SciencesNuclear Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

Theoretical Insights into Cluster Radioactivity Under Intense Laser Fields

Theoretical Insights into Cluster Radioactivity Under Intense Laser Fields

February 3, 2026
Breakthrough in Highly Selective Asymmetric 1,6-Addition of Aliphatic Grignard Reagents to Unsaturated Carbonyl Compounds

Breakthrough in Highly Selective Asymmetric 1,6-Addition of Aliphatic Grignard Reagents to Unsaturated Carbonyl Compounds

February 2, 2026

Enhancing Efficiency in Robotic Joint Design

February 2, 2026

The Hidden Chemistry of Ozone: Unlocking the Secrets Behind Clean Air

February 2, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    157 shares
    Share 63 Tweet 39
  • Robotic Ureteral Reconstruction: A Novel Approach

    81 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Targeting SGLT2-PPARγ Axis in Colorectal Cancer Metabolism

Exploring Physical Activity in Frail Seniors: A Study

Paclitaxel Expands TREM2+ Macrophages, Reducing Efficacy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.