• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Aviation enhancements, better biosensors could result from new sensor technology

Bioengineer by Bioengineer
November 23, 2016
in Science
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Ryan Owens, MU College of Engineering

COLUMBIA, Mo. – Piezoelectric sensors measure changes in pressure, acceleration, temperature, strain or force and are used in a vast array of devices important to everyday life. However, these sensors often can be limited by the "white noise" they detect that can give engineers and health care workers false readings. Now, a University of Missouri College of Engineering research team has developed methods to enhance piezoelectric sensing capabilities. Enhanced sensors could be used to improve aviation, detect structural damage in buildings and bridges, and boost the capabilities of health monitors.

Guoliang Huang, an associate professor of mechanical and aerospace engineering in the MU College of Engineering, and his team's new platform improves sensors by amplifying the signal, allowing the same amount of sensors to read more data. Their new device also cuts costs by allowing fewer sensors to cover larger structures and longer distances.

"In the past, methods to produce signal intensification only have included electrical amplification," Huang said. "Our technique uses a combination of mechanical and electrical amplification, overcoming the limitations of using just electrical amplification."

The new sensing platform can be "tuned" using an electric signal, which when connected to circuit boards with sensors can pick up weaker signals that previously could not be detected.

"The amplified wave cuts through the surrounding noise," Huang said. "It's the first such device that illustrates how to use adaptive metamaterials to improve elastic wave sensing capabilities. This can be very useful to developing high-sensitivity sensing technology."

"Enhanced flexural wave sensing by adaptive gradient-index metamaterials," was published in Scientific Reports a journal of Nature. Funding for the project was provided by the U.S. Air Force Office of Scientific Research (AF 9550-15-1-0061). Byung-Lip (Les) Lee served as the program manager. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agency.

###

Editor's Note: For more on the story, please see: http://engineering.missouri.edu/2016/11/paper-illustrates-researchers-can-boost-flexural-wave-sensing/

For more on Huang's previous research, please see: http://munews.missouri.edu/news-releases/2015/0122-scientists-%E2%80%98bend%E2%80%99-acoustic-and-elastic-waves-with-new-metamaterials-that-could-have-commercial-applications/

Media Contact

Jeff Sossamon
[email protected]
573-882-3346
@mizzounews

http://www.missouri.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Liquid Phase Separation Patterns Predict Pediatric AML Outcomes

Breakthrough in Poplar Tree Research Paves the Way for Advancements in Energy and Biomaterials

Silver-Doped Zirconium Copper Oxide Detects Dihydroxybenzene Isomers

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.