• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Automated simulation software creates a world map of polymer properties

Bioengineer by Bioengineer
December 22, 2022
in Chemistry
Reading Time: 3 mins read
0
RadonPy logo
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The team published their method and experimental validation on Nov. 8 in npj Computational Materials.

RadonPy logo

Credit: © The Institute of Statistical Mathematics

The team published their method and experimental validation on Nov. 8 in npj Computational Materials.

“Materials informatics (MI), a new branch of materials research that combines materials data with data science, is gaining traction,” said co-corresponding author Yoshihiro Hayashi, assistant professor, Institute of Statistical Mathematics in the Research Organization of Information and Science (ROIS). Hayashi is also affiliated with the University of Tokyo’s Department of Mechanical Engineering. “MI applies machine learning to predict new materials with innovative properties and their fabrication methods from a vast design space. As such, data is the most important resource in MI.”

Despite the need, Hayashi said, efforts to create a comprehensive database of polymer properties to enable data-driven research have fallen short.

“To construct a database of polymer properties by molecular simulations, we developed RadonPy,” Hayashi said. “It’s the first open-source software that successfully automates polymer physical property calculations using simulations of classical molecular dynamics based on atomistic models — which account for the behaviors and characteristics of individual constituents.”

The program takes an assigned polymer and runs calculations to equilibrate it in prescribed system parameters. Once it does, it can then calculate the polymer’s density, radius of gyration, refractive index, thermal conductivity, specific heat capacities at constant pressure and at constant volume, among other information. RadonPy produces and stores the data, which can then be accessed later. The researchers also implemented a machine learning technique called transfer learning to correct biases and variations between the simulated property values and experimental data.

“In this study, more than 1,000 unique amorphous polymers were computed in about two months, mainly using the supercomputer Fugaku,” said co-corresponding author Ryo Yoshida, professor, Institute of Statistical Mathematics in ROIS, the National Institute for Materials Science’s Research and Services Division of Materials Data and Integrated System and The Graduate University of Advance Studies’ Department of Statistical Science. “The program implements a set of automatic computation functions for 15 different properties, which were systematically compared with experimental data to validate the calculation conditions. We also comprehensively verified the agreement between six properties obtained from high-throughput molecular dynamics calculations and experimental values.”

The research team also identified eight amorphous polymers with high conductivity, according to Yoshida. Now, the group is using RadonPy to create the world’s largest open database of polymer physics, with more than 100,000 different polymer species. In addition to ROIS, three universities and 19 companies are partnering to jointly develop other databases with RadonPy for a variety of applications in academia and industry.

“This project will create a world map of polymer material properties,” Hayashi said. “Such exhaustive observations cannot be achieved solely via experimental approaches requiring considerable costs, such as in material synthesis. This research is the first step toward a new horizon of polymer science.”

Other contributors include Junichiro Shiomi and Junko Morikawa, both affiliated with the Institute of Statistical Mathematics in ROIS. Shiomi is also affiliated with the University of Tokyo’s Department of Mechanical Engineering and Institute of Engineering Innovation. Morikawa is also affiliated with the Department of Materials Science and Engineering in the Tokyo Institute of Technology’s School of Materials and Chemical Technology.

The Japan Science and Technology Agency; the Ministry of Education, Culture, Sports, Science and Technology, Japan Society for the Promotion of Science and the JPCI System Research Project supported this research.

 

###

About The Institute of Statistical Mathematics (ISM)

The Institute of Statistical Mathematics (ISM) is part of Japan’s Research Organization of Information and Systems (ROIS). With more than 75 years of history, the institute is an internationally renowned facility for research on statistical mathematics including comprehensive evaluation of earthquake data in Japan and other parts of the world. ISM comprises three different departments including the Department of Statistical Modeling, the Department of Statistical Data, and the Department of Statistical Inference and Mathematics, as well as several key data and research centers. Through the efforts of various research departments and centers, ISM aims to continuously facilitate cutting edge research collaboration with universities, research institutions, and industries both in Japan and other countries.

About the Research Organization of Information and Systems (ROIS)

ROIS is a parent organization of four national institutes (National Institute of Polar Research, National Institute of Informatics, the Institute of Statistical Mathematics and National Institute of Genetics) and the Joint Support-Center for Data Science Research. It is ROIS’s mission to promote integrated, cutting-edge research that goes beyond the barriers of these institutions, in addition to facilitating their research activities, as members of inter-university research institutes.



Journal

npj Computational Materials

DOI

10.1038/s41524-022-00906-4

Article Publication Date

8-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Palladium Filters Pave the Way for More Affordable, Efficient Hydrogen Fuel Production

October 1, 2025
Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

October 1, 2025

Innovative Biochar Technology Offers Breakthrough in Soil Remediation and Crop Protection

October 1, 2025

CATNIP Tool Expands Access to Sustainable Chemistry Through Data-Driven Innovation

October 1, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    69 shares
    Share 28 Tweet 17
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Probiotics Alleviate Ovarian Angiogenesis in PCOS Models

Gene Variants Linked to Antipsychotic-Induced Movement Disorders

Key Genes for Fish Adaptation: Spotlight on Mechanisms

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.